Papers
Topics
Authors
Recent
2000 character limit reached

Modelling of physical systems with a Hopf bifurcation using mechanistic models and machine learning

Published 7 Sep 2022 in math.DS, cs.LG, and nlin.CD | (2209.06910v1)

Abstract: We propose a new hybrid modelling approach that combines a mechanistic model with a machine-learnt model to predict the limit cycle oscillations of physical systems with a Hopf bifurcation. The mechanistic model is an ordinary differential equation normal-form model capturing the bifurcation structure of the system. A data-driven mapping from this model to the experimental observations is then identified based on experimental data using machine learning techniques. The proposed method is first demonstrated numerically on a Van der Pol oscillator and a three-degree-of-freedom aeroelastic model. It is then applied to model the behaviour of a physical aeroelastic structure exhibiting limit cycle oscillations during wind tunnel tests. The method is shown to be general, data-efficient and to offer good accuracy without any prior knowledge about the system other than its bifurcation structure.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.