Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the State of the Art in Authorship Attribution and Authorship Verification (2209.06869v2)

Published 14 Sep 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Despite decades of research on authorship attribution (AA) and authorship verification (AV), inconsistent dataset splits/filtering and mismatched evaluation methods make it difficult to assess the state of the art. In this paper, we present a survey of the fields, resolve points of confusion, introduce Valla that standardizes and benchmarks AA/AV datasets and metrics, provide a large-scale empirical evaluation, and provide apples-to-apples comparisons between existing methods. We evaluate eight promising methods on fifteen datasets (including distribution-shifted challenge sets) and introduce a new large-scale dataset based on texts archived by Project Gutenberg. Surprisingly, we find that a traditional Ngram-based model performs best on 5 (of 7) AA tasks, achieving an average macro-accuracy of $76.50\%$ (compared to $66.71\%$ for a BERT-based model). However, on the two AA datasets with the greatest number of words per author, as well as on the AV datasets, BERT-based models perform best. While AV methods are easily applied to AA, they are seldom included as baselines in AA papers. We show that through the application of hard-negative mining, AV methods are competitive alternatives to AA methods. Valla and all experiment code can be found here: https://github.com/JacobTyo/Valla

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com