Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certified Robustness to Word Substitution Ranking Attack for Neural Ranking Models (2209.06691v1)

Published 14 Sep 2022 in cs.IR

Abstract: Neural ranking models (NRMs) have achieved promising results in information retrieval. NRMs have also been shown to be vulnerable to adversarial examples. A typical Word Substitution Ranking Attack (WSRA) against NRMs was proposed recently, in which an attacker promotes a target document in rankings by adding human-imperceptible perturbations to its text. This raises concerns when deploying NRMs in real-world applications. Therefore, it is important to develop techniques that defend against such attacks for NRMs. In empirical defenses adversarial examples are found during training and used to augment the training set. However, such methods offer no theoretical guarantee on the models' robustness and may eventually be broken by other sophisticated WSRAs. To escape this arms race, rigorous and provable certified defense methods for NRMs are needed. To this end, we first define the \textit{Certified Top-$K$ Robustness} for ranking models since users mainly care about the top ranked results in real-world scenarios. A ranking model is said to be Certified Top-$K$ Robust on a ranked list when it is guaranteed to keep documents that are out of the top $K$ away from the top $K$ under any attack. Then, we introduce a Certified Defense method, named CertDR, to achieve certified top-$K$ robustness against WSRA, based on the idea of randomized smoothing. Specifically, we first construct a smoothed ranker by applying random word substitutions on the documents, and then leverage the ranking property jointly with the statistical property of the ensemble to provably certify top-$K$ robustness. Extensive experiments on two representative web search datasets demonstrate that CertDR can significantly outperform state-of-the-art empirical defense methods for ranking models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Chen Wu (169 papers)
  2. Ruqing Zhang (60 papers)
  3. Jiafeng Guo (161 papers)
  4. Wei Chen (1290 papers)
  5. Yixing Fan (55 papers)
  6. Maarten de Rijke (263 papers)
  7. Xueqi Cheng (274 papers)
Citations (8)