Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Swarm-LIO: Decentralized Swarm LiDAR-inertial Odometry (2209.06628v3)

Published 14 Sep 2022 in cs.RO

Abstract: Accurate self and relative state estimation are the critical preconditions for completing swarm tasks, e.g., collaborative autonomous exploration, target tracking, search and rescue. This paper proposes Swarm-LIO: a fully decentralized state estimation method for aerial swarm systems, in which each drone performs precise ego-state estimation, exchanges ego-state and mutual observation information by wireless communication, and estimates relative state with respect to (w.r.t.) the rest of UAVs, all in real-time and only based on LiDAR-inertial measurements. A novel 3D LiDAR-based drone detection, identification and tracking method is proposed to obtain observations of teammate drones. The mutual observation measurements are then tightly-coupled with IMU and LiDAR measurements to perform real-time and accurate estimation of ego-state and relative state jointly. Extensive real-world experiments show the broad adaptability to complicated scenarios, including GPS-denied scenes, degenerate scenes for camera (dark night) or LiDAR (facing a single wall). Compared with ground-truth provided by motion capture system, the result shows the centimeter-level localization accuracy which outperforms other state-of-the-art LiDAR-inertial odometry for single UAV system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Fangcheng Zhu (16 papers)
  2. Yunfan Ren (16 papers)
  3. Fanze Kong (20 papers)
  4. Huajie Wu (3 papers)
  5. Siqi Liang (15 papers)
  6. Nan Chen (98 papers)
  7. Wei Xu (536 papers)
  8. Fu Zhang (86 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.