Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Contrastive Learning with Personalized Augmentation (2209.06560v2)

Published 14 Sep 2022 in cs.LG

Abstract: Graph contrastive learning (GCL) has emerged as an effective tool for learning unsupervised representations of graphs. The key idea is to maximize the agreement between two augmented views of each graph via data augmentation. Existing GCL models mainly focus on applying \textit{identical augmentation strategies} for all graphs within a given scenario. However, real-world graphs are often not monomorphic but abstractions of diverse natures. Even within the same scenario (e.g., macromolecules and online communities), different graphs might need diverse augmentations to perform effective GCL. Thus, blindly augmenting all graphs without considering their individual characteristics may undermine the performance of GCL arts.To deal with this, we propose the first principled framework, termed as \textit{G}raph contrastive learning with \textit{P}ersonalized \textit{A}ugmentation (GPA), to advance conventional GCL by allowing each graph to choose its own suitable augmentation operations.In essence, GPA infers tailored augmentation strategies for each graph based on its topology and node attributes via a learnable augmentation selector, which is a plug-and-play module and can be effectively trained with downstream GCL models end-to-end. Extensive experiments across 11 benchmark graphs from different types and domains demonstrate the superiority of GPA against state-of-the-art competitors.Moreover, by visualizing the learned augmentation distributions across different types of datasets, we show that GPA can effectively identify the most suitable augmentations for each graph based on its characteristics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xin Zhang (904 papers)
  2. Qiaoyu Tan (36 papers)
  3. Xiao Huang (112 papers)
  4. Bo Li (1107 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.