Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedding Irregular Colorings into Connected Factorizations (2209.06402v1)

Published 14 Sep 2022 in math.CO and cs.DM

Abstract: For $r:=(r_1,\dots,r_k)$, an $r$-factorization of the complete $\lambda$-fold $h$-uniform $n$-vertex hypergraph $\lambda K_nh$ is a partition of (the edges of) $\lambda K_nh$ into $F_1,\dots, F_k$ such that for $i=1,\dots,k$, $F_i$ is $r_i$-regular and spanning. Suppose that $n \geq (h-1)(2m-1)$. Given a partial $r$-factorization of $\lambda K_mh$, that is, a coloring (i.e. partition) $P$ of the edges of $\lambda K_mh$ into $F_1,\dots, F_k$ such that for $i=1,\dots,k$, $F_i$ is spanning and the degree of each vertex in $F_i$ is at most $r_i$, we find necessary and sufficient conditions that ensure $P$ can be extended to a connected $r$-factorization of $\lambda K_nh$ (i.e. an $r$-factorization in which each factor is connected). Moreover, we prove a general result that implies the following. Given a partial $s$-factorization $P$ of any sub-hypergraph of $\lambda K_mh$, where $s:=(s_1,\dots,s_q)$ and $q$ is not too big, we find necessary and sufficient conditions under which $P$ can be embedded into a connected $r$-factorization of $\lambda K_nh$. These results can be seen as unified generalizations of various classical combinatorial results such as Cruse's theorem on embedding partial symmetric latin squares, Baranyai's theorem on factorization of hypergraphs, Hilton's theorem on extending path decompositions into Hamiltonian decompositions, H\"{a}ggkvist and Hellgren's theorem on extending 1-factorizations, and Hilton, Johnson, Rodger, and Wantland's theorem on embedding connected factorizations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.