Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jointly Contrastive Representation Learning on Road Network and Trajectory (2209.06389v2)

Published 14 Sep 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Road network and trajectory representation learning are essential for traffic systems since the learned representation can be directly used in various downstream tasks (e.g., traffic speed inference, and travel time estimation). However, most existing methods only contrast within the same scale, i.e., treating road network and trajectory separately, which ignores valuable inter-relations. In this paper, we aim to propose a unified framework that jointly learns the road network and trajectory representations end-to-end. We design domain-specific augmentations for road-road contrast and trajectory-trajectory contrast separately, i.e., road segment with its contextual neighbors and trajectory with its detour replaced and dropped alternatives, respectively. On top of that, we further introduce the road-trajectory cross-scale contrast to bridge the two scales by maximizing the total mutual information. Unlike the existing cross-scale contrastive learning methods on graphs that only contrast a graph and its belonging nodes, the contrast between road segment and trajectory is elaborately tailored via novel positive sampling and adaptive weighting strategies. We conduct prudent experiments based on two real-world datasets with four downstream tasks, demonstrating improved performance and effectiveness. The code is available at https://github.com/mzy94/JCLRNT.

Citations (37)

Summary

We haven't generated a summary for this paper yet.