Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion through permeable interfaces: Fundamental equations and their application to first-passage and local time statistics (2209.06023v1)

Published 13 Sep 2022 in cond-mat.stat-mech

Abstract: The diffusion equation is the primary tool to study the movement dynamics of a free Brownian particle, but when spatial heterogeneities in the form of permeable interfaces are present, no fundamental equation has been derived. Here we obtain such an equation from a microscopic description using a lattice random walk model. The sought after Fokker-Planck description and the corresponding backward Kolmogorov equation are employed to investigate first-passage and local time statistics and gain new insights. Among them a surprising phenomenon, in the case of a semibounded domain, is the appearance of a regime of dependence and independence on the location of the permeable barrier in the mean first-passage time. The new formalism is completely general: it allows to study the dynamics in the presence of multiple permeable barriers as well as reactive heterogeneities in bounded or unbounded domains and under the influence of external forces.

Summary

We haven't generated a summary for this paper yet.