Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Don't Complete It! Preventing Unhelpful Code Completion for Productive and Sustainable Neural Code Completion Systems (2209.05948v3)

Published 13 Sep 2022 in cs.SE and cs.AI

Abstract: Currently, large pre-trained LLMs are widely applied in neural code completion systems. Though large code models significantly outperform their smaller counterparts, around 70\% of displayed code completions from Github Copilot are not accepted by developers. Being reviewed but not accepted, their help to developer productivity is considerably limited and may conversely aggravate the workload of developers, as the code completions are automatically and actively generated in state-of-the-art code completion systems as developers type out once the service is enabled. Even worse, considering the high cost of the large code models, it is a huge waste of computing resources and energy, which severely goes against the sustainable development principle of AI technologies. However, such waste has never been realized, not to mention effectively addressed, in the research community for neural code completion. Hence, preventing such unhelpful code completions from happening in a cost-friendly way is of urgent need. To fill this significant gap, we first investigate the prompts of unhelpful code completions, called "low-return prompts". We empirically identify four observable patterns in low-return prompts, each lacking necessary information, making it difficult to address through enhancements to the model's accuracy alone. This demonstrates the feasibility of identifying such low-return prompts based on the prompts themselves. Motivated by this finding, we propose an early-rejection mechanism to turn down low-return prompts by foretelling the code completion qualities. The prompts that are estimated to receive unhelpful code completions will not be sent to the model. Furthermore, we investigated five types of estimators to demonstrate the feasibility of the mechanism. The experimental results show that the estimator can reject 20% of code completion requests with a 97.4% Precision.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com