Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On bounded depth proofs for Tseitin formulas on the grid; revisited (2209.05839v2)

Published 13 Sep 2022 in cs.CC

Abstract: We study Frege proofs using depth-$d$ Boolean formulas for the Tseitin contradiction on $n \times n$ grids. We prove that if each line in the proof is of size $M$ then the number of lines is exponential in $n/(\log M){O(d)}$. This strengthens a recent result of Pitassi et al. [PRT22]. The key technical step is a multi-switching lemma extending the switching lemma of H\r{a}stad [H\r{a}s20] for a space of restrictions related to the Tseitin contradiction. The strengthened lemma also allows us to improve the lower bound for standard proof size of bounded depth Frege refutations from exponential in $\tilde \Omega (n{1/59d})$ to exponential in $\tilde \Omega (n{1/d})$. This strengthens the bounds given in the preliminary version of this paper [HR22].

Citations (2)

Summary

We haven't generated a summary for this paper yet.