Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Network-based SAT-Resilient Obfuscation Towards Enhanced Logic Locking (2209.05799v1)

Published 13 Sep 2022 in cs.CR and cs.LG

Abstract: Logic obfuscation is introduced as a pivotal defense against multiple hardware threats on Integrated Circuits (ICs), including reverse engineering (RE) and intellectual property (IP) theft. The effectiveness of logic obfuscation is challenged by the recently introduced Boolean satisfiability (SAT) attack and its variants. A plethora of countermeasures has also been proposed to thwart the SAT attack. Irrespective of the implemented defense against SAT attacks, large power, performance, and area overheads are indispensable. In contrast, we propose a cognitive solution: a neural network-based unSAT clause translator, SATConda, that incurs a minimal area and power overhead while preserving the original functionality with impenetrable security. SATConda is incubated with an unSAT clause generator that translates the existing conjunctive normal form (CNF) through minimal perturbations such as the inclusion of pair of inverters or buffers or adding a new lightweight unSAT block depending on the provided CNF. For efficient unSAT clause generation, SATConda is equipped with a multi-layer neural network that first learns the dependencies of features (literals and clauses), followed by a long-short-term-memory (LSTM) network to validate and backpropagate the SAT-hardness for better learning and translation. Our proposed SATConda is evaluated on ISCAS85 and ISCAS89 benchmarks and is seen to defend against multiple state-of-the-art successfully SAT attacks devised for hardware RE. In addition, we also evaluate our proposed SATCondas empirical performance against MiniSAT, Lingeling and Glucose SAT solvers that form the base for numerous existing deobfuscation SAT attacks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.