Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FlipDyn: A game of resource takeovers in dynamical systems (2209.05574v1)

Published 12 Sep 2022 in cs.GT, cs.SY, and eess.SY

Abstract: We introduce a game in which two players with opposing objectives seek to repeatedly takeover a common resource. The resource is modeled as a discrete time dynamical system over which a player can gain control after spending a state-dependent amount of energy at each time step. We use a FlipIT-inspired deterministic model that decides which player is in control at every time step. A player's policy is the probability with which the player should spend energy to gain control at each time step. Our main results are three-fold. First, we present analytic expressions for the cost-to-go as a function of the hybrid state of the system, i.e., the physical state of the dynamical system and the binary \texttt{FlipDyn} state for any general system with arbitrary costs. These expressions are exact when the physical state is also discrete and has finite cardinality. Second, for a continuous physical state with linear dynamics and quadratic costs, we derive expressions for Nash equilibrium (NE). For scalar physical states, we show that the NE depends only on the parameters of the value function and costs, and is independent of the state. Third, we derive an approximate value function for higher dimensional linear systems with quadratic costs. Finally, we illustrate our results through a numerical study on the problem of controlling a linear system in a given environment in the presence of an adversary.

Citations (3)

Summary

We haven't generated a summary for this paper yet.