Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Behavior of Belief Propagation (2209.05464v1)

Published 5 Sep 2022 in cs.AI, cs.LG, and stat.ML

Abstract: Probabilistic graphical models are a powerful concept for modeling high-dimensional distributions. Besides modeling distributions, probabilistic graphical models also provide an elegant framework for performing statistical inference; because of the high-dimensional nature, however, one must often use approximate methods for this purpose. Belief propagation performs approximate inference, is efficient, and looks back on a long success-story. Yet, in most cases, belief propagation lacks any performance and convergence guarantees. Many realistic problems are presented by graphical models with loops, however, in which case belief propagation is neither guaranteed to provide accurate estimates nor that it converges at all. This thesis investigates how the model parameters influence the performance of belief propagation. We are particularly interested in their influence on (i) the number of fixed points, (ii) the convergence properties, and (iii) the approximation quality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.