Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling of Political Systems using Wasserstein Gradient Flows (2209.05382v1)

Published 12 Sep 2022 in eess.SY and cs.SY

Abstract: The study of complex political phenomena such as parties' polarization calls for mathematical models of political systems. In this paper, we aim at modeling the time evolution of a political system whereby various parties selfishly interact to maximize their political success (e.g., number of votes). More specifically, we identify the ideology of a party as a probability distribution over a one-dimensional real-valued ideology space, and we formulate a gradient flow in the probability space (also called a Wasserstein gradient flow) to study its temporal evolution. We characterize the equilibria of the arising dynamic system, and establish local convergence under mild assumptions. We calibrate and validate our model with real-world time-series data of the time evolution of the ideologies of the Republican and Democratic parties in the US Congress. Our framework allows to rigorously reason about various political effects such as parties' polarization and homogeneity. Among others, our mechanistic model can explain why political parties become more polarized and less inclusive with time (their distributions get "tighter"), until all candidates in a party converge asymptotically to the same ideological position.

Citations (1)

Summary

We haven't generated a summary for this paper yet.