Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mending Partial Solutions with Few Changes (2209.05363v1)

Published 12 Sep 2022 in cs.DC and cs.CC

Abstract: In this paper, we study the notion of mending, i.e. given a partial solution to a graph problem, we investigate how much effort is needed to turn it into a proper solution. For example, if we have a partial coloring of a graph, how hard is it to turn it into a proper coloring? In prior work (SIROCCO 2022), this question was formalized and studied from the perspective of mending radius: if there is a hole that we need to patch, how far do we need to modify the solution? In this work, we investigate a complementary notion of mending volume: how many nodes need to be modified to patch a hole? We focus on the case of locally checkable labeling problems (LCLs) in trees, and show that already in this setting there are two infinite hierarchies of problems: for infinitely many values $0 < \alpha \le 1$, there is an LCL problem with mending volume $\Theta(n\alpha)$, and for infinitely many values $k \ge 1$, there is an LCL problem with mending volume $\Theta(\logk n)$. Hence the mendability of LCL problems on trees is a much more fine-grained question than what one would expect based on the mending radius alone. We define three variants of the theme: (1) existential mending volume, i.e., how many nodes need to be modified, (2) expected mending volume, i.e., how many nodes we need to explore to find a patch if we use randomness, and (3) deterministic mending volume, i.e., how many nodes we need to explore if we use a deterministic algorithm. We show that all three notions are distinct from each other, and we analyze the landscape of the complexities of LCL problems for the respective models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.