Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven invariant subspace identification for black-box switched linear systems (2209.05320v1)

Published 12 Sep 2022 in math.OC, cs.SY, and eess.SY

Abstract: We present an algorithmic framework for the identification of candidate invariant subspaces for switched linear systems. Namely, the framework allows to compute an orthonormal basis in which the matrices of the system are close to block-triangular matrices, based on a finite set of observed one-step trajectories and with a priori confidence level. The link between the existence of an invariant subspace and a common block-triangularization of the system matrices is well known. Under some assumptions on the system, one can also infer the existence of an invariant subspace when the matrices are close to be block-triangular. Our approach relies on quadratic Lyapunov analysis and recent tools in scenario optimization. We present two applications of our results for problems of consensus and opinion dynamics; the first one allows to identify the disconnected components in a switching hidden network, while the second one identifies the stationary opinion vector of a switching gossip process with antagonistic interactions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.