Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spotting Virus from Satellites: Modeling the Circulation of West Nile Virus Through Graph Neural Networks (2209.05251v2)

Published 7 Sep 2022 in cs.CV, cs.AI, and cs.LG

Abstract: The occurrence of West Nile Virus (WNV) represents one of the most common mosquito-borne zoonosis viral infections. Its circulation is usually associated with climatic and environmental conditions suitable for vector proliferation and virus replication. On top of that, several statistical models have been developed to shape and forecast WNV circulation: in particular, the recent massive availability of Earth Observation (EO) data, coupled with the continuous advances in the field of Artificial Intelligence, offer valuable opportunities. In this paper, we seek to predict WNV circulation by feeding Deep Neural Networks (DNNs) with satellite images, which have been extensively shown to hold environmental and climatic features. Notably, while previous approaches analyze each geographical site independently, we propose a spatial-aware approach that considers also the characteristics of close sites. Specifically, we build upon Graph Neural Networks (GNN) to aggregate features from neighbouring places, and further extend these modules to consider multiple relations, such as the difference in temperature and soil moisture between two sites, as well as the geographical distance. Moreover, we inject time-related information directly into the model to take into account the seasonality of virus spread. We design an experimental setting that combines satellite images - from Landsat and Sentinel missions - with ground truth observations of WNV circulation in Italy. We show that our proposed Multi-Adjacency Graph Attention Network (MAGAT) consistently leads to higher performance when paired with an appropriate pre-training stage. Finally, we assess the importance of each component of MAGAT in our ablation studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. L. H. Taylor, S. M. Latham, and M. E. Woolhouse, “Risk factors for human disease emergence,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 356, pp. 983–989, 2001.
  2. N. Komar, S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, B. Davis, R. Bowen, and M. Bunning, “Experimental infection of north american birds with the new york 1999 strain of west nile virus,” Emerging infectious diseases, vol. 9, p. 311, 2003.
  3. A. Rizzoli, L. Bolzoni, E. A. Chadwick, G. Capelli, F. Montarsi, M. Grisenti, J. M. de la Puente, J. Muñoz, J. Figuerola, R. Soriguer et al., “Understanding west nile virus ecology in europe: Culex pipiens host feeding preference in a hotspot of virus emergence,” Parasites & vectors, vol. 8, pp. 1–13, 2015.
  4. M. Spedicato, I. Carmine, A. Bellacicco, G. Marruchella, V. Marini, M. Pisciella, G. Di Francesco, A. Lorusso, F. Monaco, and G. Savini, “Experimental infection of rock pigeons (columba livia) with three west nile virus lineage 1 strains isolated in italy between 2009 and 2012,” Epidemiology & Infection, vol. 144, no. 6, pp. 1301–1311, 2016.
  5. G. Mencattelli, F. Iapaolo, A. Polci, M. Marcacci, A. Di Gennaro, L. Teodori, V. Curini, V. Di Lollo, B. Secondini, S. Scialabba et al., “West nile virus lineage 2 overwintering in italy,” Tropical Medicine and Infectious Disease, vol. 7, no. 8, p. 160, 2022.
  6. S. Paz and J. C. Semenza, “Environmental drivers of west nile fever epidemiology in europe and western asia—a review,” International journal of environmental research and public health, vol. 10, pp. 3543–3562, 2013.
  7. A. M. Kilpatrick, M. A. Meola, R. M. Moudy, and L. D. Kramer, “Temperature, viral genetics, and the transmission of west nile virus by culex pipiens mosquitoes,” PLOS Pathogens, vol. 4, pp. 1–7, 2008.
  8. T. H. Jetten and D. A. Focks, “Potential changes in the distribution of dengue transmission under climate warming.” The American journal of tropical medicine and hygiene, vol. 57, no. 3, pp. 285–297, 1997.
  9. D. J. Dohm, M. L. O’Guinn, and M. J. Turell, “Effect of environmental temperature on the ability of culex pipiens (diptera: Culicidae) to transmit west nile virus,” Journal of Medical Entomology, vol. 39, pp. 221–225, 2002.
  10. S. Paz, “The west nile virus outbreak in israel (2000) from a new perspective: the regional impact of climate change,” International journal of environmental health research, vol. 16, pp. 1–13, 2006.
  11. J. C. Semenza and B. Menne, “Climate change and infectious diseases in europe,” The Lancet. Infectious diseases, vol. 9, pp. 365–375, 2009.
  12. W. J. Tabachnick, “Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world,” The Journal of experimental biology, vol. 213, pp. 946–954, 2010.
  13. K. L. Ebi, E. Lindgren, J. E. Suk, and J. C. Semenza, “Adaptation to the infectious disease impacts of climate change,” Climatic Change, vol. 118, pp. 355–365, 2013.
  14. J. C. Semenza and J. E. Suk, “Vector-borne diseases and climate change: a european perspective,” FEMS microbiology letters, vol. 365, p. fnx244, 2018.
  15. J. C. Semenza and S. Paz, “Climate change and infectious disease in europe: Impact, projection and adaptation,” The Lancet Regional Health-Europe, vol. 9, p. 100230, 2021.
  16. V. Chevalier, A. Tran, and B. Durand, “Predictive modeling of west nile virus transmission risk in the mediterranean basin: how far from landing?” International journal of environmental research and public health, vol. 11, no. 1, pp. 67–90, 2014.
  17. A. Tran, B. Sudre, S. Paz, M. Rossi, A. Desbrosse, V. Chevalier, and J. C. Semenza, “Environmental predictors of west nile fever risk in europe,” International journal of health geographics, vol. 13, no. 1, p. 26, 2014.
  18. M. Marcantonio, A. Rizzoli, M. Metz, R. Rosà, G. Marini, E. Chadwick, and M. Neteler, “Identifying the environmental conditions favouring west nile virus outbreaks in europe,” PlOS one, vol. 10, p. e0121158, 2015.
  19. A. Conte, L. Candeloro, C. Ippoliti, F. Monaco, F. De Massis, R. Bruno, D. Di Sabatino, M. L. Danzetta, A. Benjelloun, B. Belkadi et al., “Spatio-temporal identification of areas suitable for west nile disease in the mediterranean basin and central europe,” PloS one, vol. 10, p. e0146024, 2015.
  20. T. Zhang, J. Su, C. Liu, W.-H. Chen, H. Liu, and G. Liu, “Band selection in sentinel-2 satellite for agriculture applications,” in 2017 23rd International Conference on Automation and Computing (ICAC).   IEEE, 2017, pp. 1–6.
  21. S. Vincenzi, A. Porrello, P. Buzzega, A. Conte, C. Ippoliti, L. Candeloro, A. Di Lorenzo, A. C. Dondona, and S. Calderara, “Spotting insects from satellites: modeling the presence of culicoides imicola through deep cnns,” in International Conference on Signal-Image Technology & Internet-Based Systems, nov 2019, pp. 159–166.
  22. Y. Liu, X. Chen, Z. Wang, Z. J. Wang, R. K. Ward, and X. Wang, “Deep learning for pixel-level image fusion: Recent advances and future prospects,” Information Fusion, vol. 42, pp. 158–173, 2018.
  23. M. Gong, J. Zhao, J. Liu, Q. Miao, and L. Jiao, “Change detection in synthetic aperture radar images based on deep neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, pp. 125–138, 2016.
  24. A. Shafique, G. Cao, Z. Khan, M. Asad, and M. Aslam, “Deep learning-based change detection in remote sensing images: A review,” Remote Sensing, vol. 14, no. 4, 2022.
  25. S. Vincenzi, A. Porrello, P. Buzzega, M. Cipriano, P. Fronte, R. Cuccu, C. Ippoliti, A. Conte, and S. Calderara, “The color out of space: learning self-supervised representations for earth observation imagery,” in 2020 25th International Conference on Pattern Recognition (ICPR).   IEEE, 2021, pp. 3034–3041.
  26. C. Ippoliti, L. Candeloro, M. Gilbert, M. Goffredo, G. Mancini, G. Curci, S. Falasca, S. Tora, A. Di Lorenzo, M. Quaglia et al., “Defining ecological regions in italy based on a multivariate clustering approach: A first step towards a targeted vector borne disease surveillance,” PLOS one, vol. 14, no. 7, 2019.
  27. A. C. Courville, “Modulating early visual processing by language,” in NIPS, 2017.
  28. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  29. M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “Esa’s sentinel missions in support of earth system science,” Remote Sensing of Environment, vol. 120, pp. 84–90, 2012.
  30. D. P. Roy, M. A. Wulder, T. R. Loveland, C. Woodcock, R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy et al., “Landsat-8: Science and product vision for terrestrial global change research,” Remote sensing of Environment, vol. 145, pp. 154–172, 2014.
  31. L. Candeloro, C. Ippoliti, F. Iapaolo, F. Monaco, D. Morelli, R. Cuccu, P. Fronte, S. Calderara, S. Vincenzi, A. Porrello et al., “Predicting wnv circulation in italy using earth observation data and extreme gradient boosting model,” Remote Sensing, vol. 12, no. 18, p. 3064, 2020.
  32. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.   Association for Computing Machinery, 2016, p. 785–794.
  33. R. G. Bailey, “Identifying ecoregion boundaries,” Environmental management, vol. 34, no. 1, pp. S14–S26, 2004.
  34. G. Larsson, M. Maire, and G. Shakhnarovich, “Colorization as a proxy task for visual understanding,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6874–6883.
  35. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in Neural Information Processing Systems, vol. 25, 2012.
  36. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE International Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  37. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.
  38. A. Porrello, D. Abati, S. Calderara, and R. Cucchiara, “Classifying signals on irregular domains via convolutional cluster pooling,” in The 22nd International Conference on Artificial Intelligence and Statistics.   PMLR, 2019, pp. 1388–1397.
  39. D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in graph neural networks,” Advances in Neural Information Processing Systems, vol. 33, pp. 2220–2231, 2020.
  40. M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in Advances in Neural Information Processing Systems, 2016, p. 3844–3852.
  41. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in International Conference on Learning Representations, 2017.
  42. L. Gong and Q. Cheng, “Exploiting edge features for graph neural networks,” in IEEE International Conference on Computer Vision and Pattern Recognition, 2019.
  43. U. S. Shanthamallu, J. J. Thiagarajan, H. Song, and A. Spanias, “Gramme: Semisupervised learning using multilayered graph attention models,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, 2020.
  44. L. Zangari, R. Interdonato, A. Calió, and A. Tagarelli, “Graph convolutional and attention models for entity classification in multilayer networks,” Applied Network Science, vol. 6, 2021.
  45. J. Wu, B. Li, Y. Qin, W. Ni, H. Zhang, and Y. Sun, “A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images,” International Journal of Applied Earth Observation and Geoinformation, p. 102615, 2021.
  46. A. M. Censi, D. Ienco, Y. J. E. Gbodjo, R. G. Pensa, R. Interdonato, and R. Gaetano, “Attentive spatial temporal graph cnn for land cover mapping from multi temporal remote sensing data,” IEEE Access, vol. 9, 2021.
  47. S. Ouyang and Y. Li, “Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery,” Remote Sensing, vol. 13, no. 1, p. 119, 2021.
  48. Z. Li and J. Chen, “Superpixel segmentation using linear spectral clustering,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1356–1363.
  49. P. Colangeli, S. Iannetti, A. Cerella, C. Ippoliti, and A. Di, “Sistema nazionale di notifica delle malattie degli animali,” Veterinaria Italiana, vol. 47, no. 3, pp. 291–301, 2011.
  50. M. Calzolari, A. Pautasso, F. Montarsi, A. Albieri, R. Bellini, P. Bonilauri, F. Defilippo, D. Lelli, A. Moreno, M. Chiari et al., “West nile virus surveillance in 2013 via mosquito screening in northern italy and the influence of weather on virus circulation,” PLOS one, vol. 10, no. 10, p. e0140915, 2015.
  51. S. Paz, “Climate change impacts on west nile virus transmission in a global context,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 370, no. 1665, p. 20130561, 2015.
  52. B. Bauer-Marschallinger, V. Freeman, S. Cao, C. Paulik, S. Schaufler, T. Stachl, S. Modanesi, C. Massari, L. Ciabatta, L. Brocca et al., “Toward global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp. 520–539, 2018.
  53. A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-supervised visual representation learning,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2019, pp. 1920–1929.
  54. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in IEEE International Conference on Computer Vision, 2017.
  55. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in Advances in Neural Information Processing Systems, 2015.
  56. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  57. G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, “Bigearthnet: A large-scale benchmark archive for remote sensing image understanding,” in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2019, pp. 5901–5904.
  58. G. Sumbul, A. De Wall, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides, M. Caetano, B. Demir, and V. Markl, “Bigearthnet-mm: A large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval [software and data sets],” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 3, pp. 174–180, 2021.
  59. R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and doubly stochastic matrices,” Pacific Journal of Mathematics, pp. 343–348, 1967.
  60. R. P. Adams and R. S. Zemel, “Ranking via sinkhorn propagation,” arXiv preprint arXiv:1106.1925, 2011.
  61. D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential linear units (elus),” International Conference on Learning Representations, 2016.
  62. D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 215–232, 1958.
  63. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.
  64. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statistics, pp. 1189–1232, 2001.
  65. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, pp. 211–252, 2015.
  66. L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Research, vol. 9, 2008.
Citations (3)

Summary

We haven't generated a summary for this paper yet.