Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounding the Rademacher Complexity of Fourier neural operators (2209.05150v3)

Published 12 Sep 2022 in cs.LG and stat.ML

Abstract: A Fourier neural operator (FNO) is one of the physics-inspired machine learning methods. In particular, it is a neural operator. In recent times, several types of neural operators have been developed, e.g., deep operator networks, Graph neural operator (GNO), and Multiwavelet-based operator (MWTO). Compared with other models, the FNO is computationally efficient and can learn nonlinear operators between function spaces independent of a certain finite basis. In this study, we investigated the bounding of the Rademacher complexity of the FNO based on specific group norms. Using capacity based on these norms, we bound the generalization error of the model. In addition, we investigated the correlation between the empirical generalization error and the proposed capacity of FNO. From the perspective of our result, we inferred that the type of group norms determines the information about the weights and architecture of the FNO model stored in the capacity. And then, we confirmed these inferences through experiments. Based on this fact, we gained insight into the impact of the number of modes used in the FNO model on the generalization error. And we got experimental results that followed our insights.

Citations (8)

Summary

We haven't generated a summary for this paper yet.