An EPTAS for Budgeted Matroid Independent Set (2209.04654v1)
Abstract: We consider the budgeted matroid independent set problem. The input is a ground set, where each element has a cost and a non-negative profit, along with a matroid over the elements and a budget. The goal is to select a subset of elements which maximizes the total profit subject to the matroid and budget constraints. Several well known special cases, where we have, e.g., a uniform matroid and a budget, or no matroid constraint (i.e., the classic knapsack problem), admit a fully polynomial-time approximation scheme (FPTAS). In contrast, already a slight generalization to the multi-budgeted matroid independent set problem has a PTAS but does not admit an efficient polynomial-time approximation scheme (EPTAS). This implies a PTAS for our problem, which is the best known result prior to this work. Our main contribution is an EPTAS for the budgeted matroid independent set problem. A key idea of the scheme is to find a representative set for the instance, whose cardinality depends solely on $1/\varepsilon$, where $\varepsilon > 0$ is the accuracy parameter of the scheme. The representative set is identified via matroid basis minimization, which can be solved by a simple greedy algorithm. Our scheme enumerates over subsets of the representative set and extends each subset using a linear program. The notion of representative sets may be useful in solving other variants of the budgeted matroid independent set problem.
- Ilan Doron-Arad (16 papers)
- Ariel Kulik (26 papers)
- Hadas Shachnai (31 papers)