Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Well-posed Boundary Conditions for the Linear Non-homogeneous Moment Equations in Half-space (2209.04629v1)

Published 10 Sep 2022 in math.AP, cs.NA, and math.NA

Abstract: We propose a necessary and sufficient condition for the well-posedness of the linear non-homogeneous Grad moment equations in half-space. The Grad moment system is based on Hermite expansion and regarded as an efficient reduction model of the Boltzmann equation. At a solid wall, the moment equations are commonly equipped with a Maxwell-type boundary condition named the Grad boundary condition. We point out that the Grad boundary condition is unstable for the non-homogeneous half-space problem. Thanks to the proposed criteria, we verify the well-posedness of a class of modified boundary conditions. The technique to make sure the existence and uniqueness mainly includes a well-designed preliminary simultaneous transformation of the coefficient matrices and Kreiss' procedure about the linear boundary value problem with characteristic boundaries. The stability is established by a weighted estimate. At the same time, we obtain the analytical expressions of the solution, which may help solve the half-space problem efficiently.

Citations (3)

Summary

We haven't generated a summary for this paper yet.