Multipoint-BAX: A New Approach for Efficiently Tuning Particle Accelerator Emittance via Virtual Objectives (2209.04587v5)
Abstract: Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of $\textit{multipoint query}$, i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose a new information-theoretic algorithm, Multipoint-BAX, for black-box optimization on multipoint queries, which queries and models individual beam-size measurements using techniques from Bayesian Algorithm Execution (BAX). Our method avoids the slow multipoint query on the accelerator by acquiring points through a $\textit{virtual objective}$, i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. We use Multipoint-BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, our method is 20$\times$ faster and more robust to noise compared to existing methods. In live tests, it matched the hand-tuned emittance at FACET-II and achieved a 24% lower emittance than hand-tuning at LCLS. Our method represents a conceptual shift for optimizing multipoint queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.
- Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.
- A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. CoRR, abs/1012.2599, 2010. URL http://arxiv.org/abs/1012.2599.
- Online optimization of storage ring nonlinear beam dynamics. Phys. Rev. ST Accel. Beams, 18:084001, Aug 2015. doi: 10.1103/PhysRevSTAB.18.084001. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.084001.
- Xiaobiao Huang. Robust simplex algorithm for online optimization. Phys. Rev. Accel. Beams, 21:104601, Oct 2018a. doi: 10.1103/PhysRevAccelBeams.21.104601. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.104601.
- Model-independent particle accelerator tuning. Phys. Rev. ST Accel. Beams, 16:102803, Oct 2013. doi: 10.1103/PhysRevSTAB.16.102803. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.16.102803.
- Xiaobiao Huang. Robust simplex algorithm for online optimization. Phys. Rev. Accel. Beams, 21:104601, Oct 2018b. doi: 10.1103/PhysRevAccelBeams.21.104601. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.104601.
- Minimization of betatron oscillations of electron beam injected into a time-varying lattice via extremum seeking. IEEE Transactions on Control Systems Technology, 26(1):336–343, Jan 2018. ISSN 1063-6536. doi: 10.1109/TCST.2017.2664728.
- Online storage ring optimization using dimension-reduction and genetic algorithms. Phys. Rev. Accel. Beams, 22:054601, May 2019. doi: 10.1103/PhysRevAccelBeams.22.054601. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.054601.
- Model-independent tuning for maximizing free electron laser pulse energy. Phys. Rev. Accel. Beams, 22:082802, Aug 2019. doi: 10.1103/PhysRevAccelBeams.22.082802. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.082802.
- Black-box optimization for automated discovery. Accounts of Chemical Research, 54(6):1334–1346, 2021.
- Offline contextual bayesian optimization. Advances in Neural Information Processing Systems, 32, 2019.
- Combo: An efficient bayesian optimization library for materials science. Materials discovery, 4:18–21, 2016.
- Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. In Joint Automatic Control Conference, number 1, pages 69–79, 1963.
- J. Močkus. On bayesian methods for seeking the extremum. In G. I. Marchuk, editor, Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, pages 400–404, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg. ISBN 978-3-540-37497-8.
- Bayesian Optimization of FEL Performance at LCLS. In 7th International Particle Accelerator Conference, page WEPOW055, 2016. doi: 10.18429/JACoW-IPAC2016-WEPOW055.
- Adaptive and safe bayesian optimization in high dimensions via one-dimensional subspaces, 2019. URL https://arxiv.org/abs/1902.03229.
- Bayesian optimization of a free-electron laser. Phys. Rev. Lett., 124:124801, Mar 2020. doi: 10.1103/PhysRevLett.124.124801. URL https://link.aps.org/doi/10.1103/PhysRevLett.124.124801.
- Automation and control of laser wakefield accelerators using bayesian optimization. Nature Communications, 11(1), dec 2020. doi: 10.1038/s41467-020-20245-6. URL https://doi.org/10.1038%2Fs41467-020-20245-6.
- Multiobjective bayesian optimization for online accelerator tuning. Phys. Rev. Accel. Beams, 24:062801, Jun 2021a. doi: 10.1103/PhysRevAccelBeams.24.062801. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.062801.
- Crystal structure prediction accelerated by bayesian optimization. Phys. Rev. Materials, 2:013803, Jan 2018. doi: 10.1103/PhysRevMaterials.2.013803. URL https://link.aps.org/doi/10.1103/PhysRevMaterials.2.013803.
- Online bayesian optimization for a recoil mass separator. Phys. Rev. Accel. Beams, 25:044601, Apr 2022a. doi: 10.1103/PhysRevAccelBeams.25.044601. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.044601.
- Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization. AIAA Journal, 53(1):104–122, 2015. doi: 10.2514/1.J052940. URL https://doi.org/10.2514/1.J052940.
- Machine learning accelerates MD-based binding pose prediction between ligands and proteins. Bioinformatics, 34(5):770–778, 10 2017. ISSN 1367-4803. doi: 10.1093/bioinformatics/btx638. URL https://doi.org/10.1093/bioinformatics/btx638.
- Longitudinal phase space reconstruction for a heavy ion accelerator. Phys. Rev. Accel. Beams, 23:114201, Nov 2020. doi: 10.1103/PhysRevAccelBeams.23.114201. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.114201.
- M. Minty and F. Zimmermann. Measurement and Control of Charged Particle Beams. Springer Berlin Heidelberg, 01 2003. ISBN 978-3-642-07914-6. doi: 10.1007/978-3-662-08581-3.
- First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4(9):641–647, August 2010. doi: 10.1038/nphoton.2010.176. URL https://doi.org/10.1038/nphoton.2010.176.
- Review of x-ray free-electron laser theory. Phys. Rev. ST Accel. Beams, 10:034801, Mar 2007. doi: 10.1103/PhysRevSTAB.10.034801. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.10.034801.
- Robert W Schoenlein. Lcls-ii high energy (lcls-ii-he): A transformative x-ray laser for science. 1 2016. doi: 10.2172/1634206. URL https://www.osti.gov/biblio/1634206.
- A low emittance, flat-beam electron source for linear colliders. Phys. Rev. ST Accel. Beams, 4:053501, May 2001. doi: 10.1103/PhysRevSTAB.4.053501. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.4.053501.
- Optimizing integrated luminosity of future hadron colliders. Phys. Rev. ST Accel. Beams, 18:101002, Oct 2015. doi: 10.1103/PhysRevSTAB.18.101002. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.101002.
- Photoinjector generation of a flat electron beam with transverse emittance ratio of 100. Phys. Rev. ST Accel. Beams, 9:031001, Mar 2006. doi: 10.1103/PhysRevSTAB.9.031001. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.9.031001.
- Flat electron beam sources for dla accelerators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 865:75–83, 2017. ISSN 0168-9002. doi: https://doi.org/10.1016/j.nima.2016.10.041. URL https://www.sciencedirect.com/science/article/pii/S0168900216310877. Physics and Applications of High Brightness Beams 2016.
- Bayesian algorithm execution: Estimating computable properties of black-box functions using mutual information. In International Conference on Machine Learning. PMLR, 2021.
- J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal, 7(4):308–313, 01 1965. ISSN 0010-4620. doi: 10.1093/comjnl/7.4.308. URL https://doi.org/10.1093/comjnl/7.4.308.
- Facet-ii facility for advanced accelerator experimental tests. Phys. Rev. Accel. Beams, 22:101301, Oct 2019. doi: 10.1103/PhysRevAccelBeams.22.101301. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.101301.
- Beam emittance measurement by the pepper-pot method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 307(2):190–194, 1991. ISSN 0168-9002. doi: https://doi.org/10.1016/0168-9002(91)90182-P. URL https://www.sciencedirect.com/science/article/pii/016890029190182P.
- J. C. T. Thangaraj and P. Piot. A high-resolution multi-slit phase space measurement technique for low-emittance beams. In Rafal Zgadzaj, Erhard Gaul, and Michael C. Downer, editors, Advanced Accelerator Concepts: 15th Advanced Accelerator Concepts Workshop, volume 1507 of American Institute of Physics Conference Series, pages 757–761, December 2012. doi: 10.1063/1.4773793.
- M. Zhang. Emittance formula for slits and pepper-pot measurement. 1996. doi: 10.2172/395453. URL https://www.osti.gov/biblio/395453.
- Peter Strehl. Beam Instrumentation and Diagnostics: Measurements in Phase Spaces, pages 213–283. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-26404-0. doi: 10.1007/3-540-26404-3˙6. URL https://doi.org/10.1007/3-540-26404-3_6.
- Commissioning the linac coherent light source injector. Phys. Rev. ST Accel. Beams, 11:030703, Mar 2008. doi: 10.1103/PhysRevSTAB.11.030703. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.11.030703.
- PyEmittance: A general python package for particle beam emittance measurements with adaptive quadrupole scans. In The 13th International Particle Accelerator Conference. IPAC22, JACoW Publishing, Geneva, Switzerland, July 2022b.
- Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. Advances in neural information processing systems, 31, 2018.
- Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly. The Journal of Machine Learning Research, 21(1):3098–3124, 2020.
- Entropy search for information-efficient global optimization. Journal of Machine Learning Research, 13(6), 2012.
- Predictive entropy search for efficient global optimization of black-box functions. Advances in neural information processing systems, 27, 2014.
- Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization. In International Conference on Machine Learning, pages 3627–3635. PMLR, 2017.
- Max-value entropy search for multi-objective bayesian optimization. Advances in neural information processing systems, 32, 2019.
- Multi-fidelity bayesian optimisation with continuous approximations. In International Conference on Machine Learning, pages 1799–1808. PMLR, 2017.
- Multi-fidelity multi-objective bayesian optimization: An output space entropy search approach. In Proceedings of the AAAI Conference on artificial intelligence, volume 34, pages 10035–10043, 2020.
- Sergey Tomin et al. Progress in Automatic Software-based Optimization of Accelerator Performance. In 7th International Particle Accelerator Conference, page WEPOY036, 2016. doi: 10.18429/JACoW-IPAC2016-WEPOY036.
- Physics model-informed gaussian process for online optimization of particle accelerators. Phys. Rev. Accel. Beams, 24:072802, Jul 2021. doi: 10.1103/PhysRevAccelBeams.24.072802. URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.072802.
- Turn-key constrained parameter space exploration for particle accelerators using bayesian active learning. Nature Communications, 12(1):5612, September 2021b.
- Neural network prior mean for particle accelerator injector tuning. In Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems (NeurIPS), 2022. URL https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_122.pdf.
- pyepics/pyepics 3.4.0, 2019. URL https://zenodo.org/record/3241645.
- Operational performance of lcls beam instrumentation. 6 2010. URL https://www.osti.gov/biblio/982082.
- F. Loehl. Measurements of the transverse emittance at the VUV-FEL. Technical Report 1435-8085, Germany, 2005.
- M. Xie. Design optimization for an X-ray free electron laser driven by SLAC LINAC. Conf. Proc. C, 950501:183–185, 1996. doi: 10.1109/PAC.1995.504603.
- FEL Gain Length and Taper Measurements at LCLS. In 31st International Free Electron Laser Conference, TUOA03, 7 2010. URL https://epaper.kek.jp/FEL2009/papers/tuoa03.pdf.
- Enhancing explainability of hyperparameter optimization via bayesian algorithm execution. arXiv preprint arXiv:2206.05447, 2022.
- An experimental design perspective on model-based reinforcement learning. In International Conference on Learning Representations, 2021.
- Myopic posterior sampling for adaptive goal oriented design of experiments. In International Conference on Machine Learning, pages 3222–3232. PMLR, 2019.
- Three-dimensional quasistatic model for high brightness beam dynamics simulation. Phys. Rev. ST Accel. Beams, 9:044204, Apr 2006. doi: 10.1103/PhysRevSTAB.9.044204. URL https://link.aps.org/doi/10.1103/PhysRevSTAB.9.044204.
- Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization tool for Python (version 1.1), 2014. URL https://github.com/fmfn/BayesianOptimization.
- SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, (version 1.7.3). Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.