Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase field model for multi-material shape optimization of inextensible rods (2209.04538v3)

Published 9 Sep 2022 in math.OC, cs.NA, math-ph, math.MP, and math.NA

Abstract: We derive a model for the optimization of the bending and torsional rigidities of non-homogeneous elastic rods. This is achieved by studying a sharp interface shape optimization problem with perimeter penalization, that treats both rigidities as objectives. We then formulate a phase field approximation of the optimization problem and show the convergence to the aforementioned sharp interface model via $\Gamma$-convergence. In the final part of this work we numerically approximate minimizers of the phase field problem by using a steepest descent approach and relate the resulting optimal shapes to the development of the morphology of plant stems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. A variational definition of the strain energy for an elastic string. J. Elasticity, 25(2):137–148, 1991.
  2. G. Allaire and G. Francfort. A numerical algorithm for topology and shape optimization. In Topology design of structures (Sesimbra, 1992), volume 227 of NATO Adv. Sci. Inst. Ser. E: Appl. Sci., pages 239–248. Kluwer Acad. Publ., Dordrecht, 1993.
  3. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
  4. S. S. Antman. The theory of rods. In C. Truesdell, editor, Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells, pages 641–703. Springer, Berlin, Heidelberg, 1973.
  5. S. S. Antman. Nonlinear problems of elasticity, volume 107 of Applied Mathematical Sciences. Springer, New York, second edition, 2005.
  6. An introduction to the mechanics of solids. Engineering Mechanics series. McGraw-Hill, second edition, 1978.
  7. M. P. Bendsøe. Optimization of structural topology, shape, and material. Springer-Verlag, Berlin, 1995.
  8. Sharp interface limit for a phase field model in structural optimization. SIAM J. Control Optim., 54(3):1558–1584, 2016.
  9. B. Bourdin and A. Chambolle. Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var., 9:19–48, 2003.
  10. G. Dal Maso. An introduction to Γnormal-Γ\Gammaroman_Γ-convergence, volume 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1993.
  11. E. De Giorgi and T. Franzoni. Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 58(6):842–850, 1975.
  12. I. Ecsedi. Bounds for the effective shear modulus. Engineering Transactions, 53(4):415–423, 2005.
  13. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math., 55(11):1461–1506, 2002.
  14. Phase-field methods for spectral shape and topology optimization. ESAIM Control Optim. Calc. Var., 29:Paper No. 10, 57, 2023.
  15. Optimization with PDE constraints, volume 23 of Mathematical Modelling: Theory and Applications. Springer, New York, 2009.
  16. A phase-field version of the Faber–Krahn theorem, 2024.
  17. Y. Kim and T. Kim. Topology optimization of beam cross sections. Int. J. Solids Struct., 37(3):477–493, 2000.
  18. G. Kirchhoff. Über das Gleichgewicht und die Bewegung einer elastischen scheibe. J. Reine Angew. Math., 1850(40):51–88, 1850.
  19. R. V. Kohn and G. Strang. Optimal design and relaxation of variational problems. I, II, III. Comm. Pure Appl. Math., 39(1):113–137, 139–182, 353–377, 1986.
  20. S. G. Lekhnitskii. Torsion of anisotropic and nonhomogeneous beams. Izd. Nauka, Fiz-Mat. Literaturi, Moscow, 1971.
  21. A. G. M. Michell. LVIII. The limits of economy of material in frame-structures. Philos. Mag. (6), 8(47):589–597, 1904.
  22. L. Modica. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal., 98(2):123–142, 1987.
  23. M. G. Mora and S. Müller. Derivation of the nonlinear bending-torsion theory for inextensible rods by ΓΓ\Gammaroman_Γ-convergence. Calc. Var. Partial Differential Equations, 18(3):287–305, 2003.
  24. S. Neukamm. Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from three-dimensional elasticity. Arch. Ration. Mech. Anal., 206(2):645–706, 2012.
  25. K. Niklas. Plant biomechanics: an engineering approach to plant form and function. University of Chicago press, 1992.
  26. Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A, 429(1877):505–532, 1990.
  27. Diversity of mechanical architectures in climbing plants: an evolutionary perspective. J. Plant Growth Regul., 23:108–128, 2004.
  28. M. H. Sadd. Elasticity: theory, applications, and numerics. Academic Press, fourth edition, 2020.
  29. Peak values of twist-to-bend ratio in triangular flower stalks of Carex pendula: a study on biomechanics and functional morphology. Am. J. Bot., 107(11):1588–1596, 2020.
  30. P. Sternberg. The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal., 101(3):209–260, 1988.
  31. Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys., 229(7):2697–2718, 2010.
  32. J. Thomsen. Topology optimization of structures composed of one or two materials. Structural optimization, 5:108–115, 1992.
  33. P. Villaggio. Mathematical models for elastic structures. Cambridge University Press, Cambridge, 1997.
  34. S. Vogel. Twist-to-bend ratios and cross-sectional shapes of petioles and stems. J. Exp. Bot., 43(11):1527–1532, 1992.
  35. S. Vogel. Living in a physical world XI. To twist or bend when stressed. J. Biosci., 32(4):643–655, 2007.
  36. S. Wolff-Vorbeck. C++ code for ”Multi-material shape optimization for bending and torsion of rods”. https://zenodo.org/records/10615223, 2023.
  37. S. Wolff-Vorbeck. Optimization and uncertainty quantification for geometric structures. PhD thesis, University of Freiburg, Germany, 2023.
  38. Twist-to-bend ratio: An important selective factor for many rod-shaped biological structures. Sci. Rep., 9:17182, 2019.
  39. Charting the twist-to-bend ratio of plant axes. J. R. Soc. Interface, 19(191):20220131, 2022.
  40. Influence of structural reinforcements on the twist-to-bend ratio of plant axes: a case study on Carex pendula. Sci. Rep., 11:21232, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets