Model- and Acceleration-based Pursuit Controller for High-Performance Autonomous Racing (2209.04346v4)
Abstract: Autonomous racing is a research field gaining large popularity, as it pushes autonomous driving algorithms to their limits and serves as a catalyst for general autonomous driving. For scaled autonomous racing platforms, the computational constraint and complexity often limit the use of Model Predictive Control (MPC). As a consequence, geometric controllers are the most frequently deployed controllers. They prove to be performant while yielding implementation and operational simplicity. Yet, they inherently lack the incorporation of model dynamics, thus limiting the race car to a velocity domain where tire slip can be neglected. This paper presents Model- and Acceleration-based Pursuit (MAP) a high-performance model-based trajectory tracking algorithm that preserves the simplicity of geometric approaches while leveraging tire dynamics. The proposed algorithm allows accurate tracking of a trajectory at unprecedented velocities compared to State-of-the-Art (SotA) geometric controllers. The MAP controller is experimentally validated and outperforms the reference geometric controller four-fold in terms of lateral tracking error, yielding a tracking error of 0.055m at tested speeds up to 11m/s.
- S. Jarvenpaa and W. Standaert, “Emergent ecosystem for radical innovation: Entrepreneurial probing at formula e,” in Proceedings of the 50th HICSS, 2017.
- M. Finn, “From accelerated advertising to fanboost: mediatized motorsport,” Sport in Society, vol. 24, no. 6, pp. 937–953, 2021. [Online]. Available: https://doi.org/10.1080/17430437.2019.1710131
- J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mangharam, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing.” [Online]. Available: https://arxiv.org/abs/2202.07008
- S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, “A direct visual servoing-based framework for the 2016 IROS autonomous drone racing challenge,” J. field robot., vol. 35, no. 1, pp. 146–166, Jan. 2018.
- M. O’Kelly, H. Zheng, A. Jain, J. Auckley, K. Luong, and R. Mangharam, “Tunercar: A superoptimization toolchain for autonomous racing,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5356–5362.
- A. Wischnewski, M. Geisslinger, J. Betz, T. Betz, F. Fent, A. Heilmeier, L. Hermansdorfer, T. Herrmann, S. Huch, P. Karle, F. Nobis, L. Ögretmen, M. Rowold, F. Sauerbeck, T. Stahl, R. Trauth, M. Lienkamp, and B. Lohmann, “Indy autonomous challenge – autonomous race cars at the handling limits,” 2022. [Online]. Available: https://arxiv.org/abs/2202.03807
- J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, T. Stahl, L. Hermansdorfer, and M. Lienkamp, “A software architecture for an autonomous racecar,” in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1–6.
- J. Kabzan, M. I. Valls, V. J. F. Reijgwart, H. F. C. Hendrikx, C. Ehmke, M. Prajapat, A. Bühler, N. Gosala, M. Gupta, R. Sivanesan, A. Dhall, E. Chisari, N. Karnchanachari, S. Brits, M. Dangel, I. Sa, R. Dubé, A. Gawel, M. Pfeiffer, A. Liniger, J. Lygeros, and R. Siegwart, “AMZ driverless: The full autonomous racing system,” J. field robot., no. rob.21977, Aug. 2020.
- M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An open-source evaluation environment for continuous control and reinforcement learning,” in NeurIPS 2019 Competition and Demonstration Track. PMLR, 2020, pp. 77–89.
- J. L. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan, and J. Lygeros, “Optimization-based hierarchical motion planning for autonomous racing,” 2020. [Online]. Available: https://arxiv.org/abs/2003.04882
- A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1:43 scale rc cars,” Optimal Control Applications and Methods, vol. 36, no. 5, p. 628–647, Jul 2014. [Online]. Available: http://dx.doi.org/10.1002/oca.2123
- A. Liniger, “Pushing the limits of friction: A story of model mismatch,” 2021, iCRA21 Autonomous Racing. [Online]. Available: https://www.youtube.com/watch?v=_rTawyZghEg&t=136s
- H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle system dynamics, vol. 21, no. S1, pp. 1–18, 1992.
- V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm: “follow the gap method”,” Robotics and Autonomous Systems, vol. 60, no. 9, pp. 1123–1134, 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921889012000838
- N. Otterness, “The "disparity extender" algorithm, and f1/tenth,” April 2019.
- P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles?” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 812–818.
- J. M. Snider, “Automatic Steering Methods for Autonomous Automobile Path Tracking,” February 2009. [Online]. Available: https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf
- C. Lyu, D. Lu, C. Xiong, R. Hu, Y. Jin, J. Wang, Z. Zeng, and L. Lian, “Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments,” J. field robot., vol. 39, no. 5, pp. 543–556, Aug. 2022.
- A. Gonzalez, A. Castillo, P. Garcia, and P. Albertos, “Robust stabilization of time-varying delay systems with predictor-observer based controller,” IFAC-PapersOnLine, vol. 52, no. 1, pp. 213–218, 2019, 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896319301491
- B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu, A. Faust, G. C. de Croon, and V. J. Reddi, “Tiny robot learning (tinyrl) for source seeking on a nano quadcopter,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 7242–7248.
- S. An, F. Zhou, M. Yang, H. Zhu, C. Fu, and K. A. Tsintotas, “Real-time monocular human depth estimation and segmentation on embedded systems,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 55–62.
- S. Park, J. Deyst, and J. How, “A new nonlinear guidance logic for trajectory tracking,” in AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, Aug. 2004.
- A. Jain, M. O’Kelly, P. Chaudhari, and M. Morari, “BayesRace: Learning to race autonomously using prior experience,” arXiv:2005.04755 [cs, eess], Nov. 2020, arXiv: 2005.04755. [Online]. Available: http://arxiv.org/abs/2005.04755
- L. P. Fröhlich, C. Küttel, E. Arcari, L. Hewing, M. N. Zeilinger, and A. Carron, “Model learning and contextual controller tuning for autonomous racing,” 2021.
- F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Durr, “Super-human performance in gran turismo sport using deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, p. 4257–4264, Jul 2021. [Online]. Available: http://dx.doi.org/10.1109/LRA.2021.3064284
- Y. Song, H. Lin, E. Kaufmann, P. Dürr, and D. Scaramuzza, “Autonomous overtaking in gran turismo sport using curriculum reinforcement learning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 9403–9409.
- Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous Drone Racing with Deep Reinforcement Learning,” arXiv:2103.08624 [cs], Aug. 2021, arXiv: 2103.08624. [Online]. Available: http://arxiv.org/abs/2103.08624
- M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable benchmarks for motion planning on roads,” in 2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA, USA: IEEE, Jun. 2017, pp. 719–726. [Online]. Available: http://ieeexplore.ieee.org/document/7995802/
- V. Sukhil and M. Behl, “Adaptive lookahead pure-pursuit for autonomous racing,” 2021. [Online]. Available: https://arxiv.org/abs/2111.08873
- W.-J. Wang, T.-M. Hsu, and T.-S. Wu, “The improved pure pursuit algorithm for autonomous driving advanced system,” in 2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA), 2017, pp. 33–38.
- R. Wang, Y. Li, J. Fan, T. Wang, and X. Chen, “A novel pure pursuit algorithm for autonomous vehicles based on salp swarm algorithm and velocity controller,” IEEE Access, vol. 8, pp. 166 525–166 540, 2020.
- A. Ollero, A. García-Cerezo, and J. Martínez, “Fuzzy supervisory path tracking of mobile robots1,” IFAC Proceedings Volumes, vol. 26, no. 1, pp. 277–282, 1993, 1st IFAC International Workshop on Intelligent Autonomous Vehicles, Hampshire, UK, 18-21 April. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667017493128
- L. Chen, N. Liu, Y. Shan, and L. Chen, “A robust look-ahead distance tuning strategy for the geometric path tracking controllers,” in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 262–267.
- Y. Shan, W. Yang, C. Chen, J. Zhou, L. Zheng, and B. Li, “Cf-pursuit: A pursuit method with a clothoid fitting and a fuzzy controller for autonomous vehicles,” International Journal of Advanced Robotic Systems, vol. 12, no. 9, p. 134, 2015. [Online]. Available: https://doi.org/10.5772/61391
- F1TENTH Foundation, “Building the F1TENTH Car.” [Online]. Available: https://f1tenth.org/build.html
- C. Voser, R. Y. Hindiyeh, and J. C. Gerdes, “Analysis and control of high sideslip manoeuvres,” Vehicle System Dynamics, vol. 48, no. sup1, pp. 317–336, 2010. [Online]. Available: https://doi.org/10.1080/00423111003746140
- A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B. Lohmann, “Minimum curvature trajectory planning and control for an autonomous race car,” Vehicle System Dynamics, vol. 58, no. 10, pp. 1497–1527, 10 2020.