Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strategyproof Scheduling with Predictions (2209.04058v1)

Published 8 Sep 2022 in cs.GT

Abstract: In their seminal paper that initiated the field of algorithmic mechanism design, \citet{NR99} studied the problem of designing strategyproof mechanisms for scheduling jobs on unrelated machines aiming to minimize the makespan. They provided a strategyproof mechanism that achieves an $n$-approximation and they made the bold conjecture that this is the best approximation achievable by any deterministic strategyproof scheduling mechanism. After more than two decades and several efforts, $n$ remains the best known approximation and very recent work by \citet{CKK21} has been able to prove an $\Omega(\sqrt{n})$ approximation lower bound for all deterministic strategyproof mechanisms. This strong negative result, however, heavily depends on the fact that the performance of these mechanisms is evaluated using worst-case analysis. To overcome such overly pessimistic, and often uninformative, worst-case bounds, a surge of recent work has focused on the learning-augmented framework'', whose goal is to leverage machine-learned predictions to obtain improved approximations when these predictions are accurate (consistency), while also achieving near-optimal worst-case approximations even when the predictions are arbitrarily wrong (robustness). In this work, we study the classic strategic scheduling problem of~\citet{NR99} using the learning-augmented framework and give a deterministic polynomial-time strategyproof mechanism that is $6$-consistent and $2n$-robust. We thus achieve thebest of both worlds'': an $O(1)$ consistency and an $O(n)$ robustness that asymptotically matches the best-known approximation. We then extend this result to provide more general worst-case approximation guarantees as a function of the prediction error. Finally, we complement our positive results by showing that any $1$-consistent deterministic strategyproof mechanism has unbounded robustness.

Citations (18)

Summary

We haven't generated a summary for this paper yet.