Banach space valued $H^p$ spaces with $A_p$ weight (2209.04033v3)
Abstract: In this research we introduce the Banach space valued $Hp$ spaces with $A_p$ weight, and prove the following results: Let $\mathbb{A}$ and $\mathbb{B}$ Banach spaces, and $T$ be a convolution operator mapping $\mathbb{A}$-valued functions into $\mathbb{B}$-valued functions, i.e., $$Tf(x)=\int_{\mathbb{R}n}K(x-y)\cdot f(y)\, dy,$$ where $K$ is a strongly measurable function defined on $\mathbb{R}n$ such that $|K(x)|{\mathbb{B}}$ is locally integrable away from the origin. Suppose that $w$ is a positive weight function defined on $\mathbb{R}n$, and that i) For some $q\in [1, \infty ]$, there exists a positive constant $C_1$ such that $$\int{\mathbb{R}n}|Tf(x)|q_{\mathbb{B}}w(x)\, dx\leq C_1\int_{\mathbb{R}n}|f(x)|_{\mathbb{A}}q w(x)\,dx$$ for all $f\in Lq_{\mathbb{A}}(\mathbb{R}n)$. ii) There exists a positive constant $C_2$ independent of $y\in\mathbb{R}n$ such that $$\int_{|x|>2|y|}|K(x-y)-K(x)|{\mathbb{B}}\, dx<C_2.$$ Then there exists a positive constant $C_3$ such that $$|Tf|{L1_{\mathbb{B}}(w)}\leq C_3|f|{H1{\mathbb{A}}(w)}$$ for all $f\in H1_{\mathbb{A}}(w)$. Let $w\in A_1$. Assume that $K\in L_{\rm{loc}}(\mathbb{R}n\backslash {0})$ satisfies $$|K\ast f|{L2{\mathbb{B}}(w)}\leq C_1|f|{L2{\mathbb{A}}(w)}$$ and $$\int_{|x|\geq C_2|y|}|K(x-y)-K(x)|{\mathbb{B}}w(x+h)\, dx\leq C_3w(y+h)\;\;\;(\forall y\neq 0, \forall h\in\mathbb{R}n) $$ for certain absolute constants $C_1$, $C_2$, and $C_3$. Then there exists a positive constant $C$ independent of $f$ such that $$|K\ast f|{L1_{\mathbb{B}}(w)}\leq C|f|{H1{\mathbb{A}}(w)}$$ for all $f\in H1_{\mathbb{A}}(w)$.