Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary rigidity of Gromov hyperbolic spaces (2209.03747v1)

Published 8 Sep 2022 in math.GT and math.GR

Abstract: We introduce the concept of boundary rigidity for Gromov hyperbolic spaces. We show that a proper geodesic Gromov hyperbolic space with a pole is boundary rigid if and only if its Gromov boundary is uniformly perfect. As an application, we show that for a non-compact Gromov hyperbolic complete Riemannian manifold or a Gromov hyperbolic uniform graph, boundary rigidity is equivalent to having positive Cheeger isoperimetric constant and also to being nonamenable. Moreover, several hyperbolic fillings of compact metric spaces are proved to be boundary rigid if and only if the metric spaces are uniformly perfect. Also, boundary rigidity is shown to be equivalent to being geodesically rich, a concept introduced by Shchur (J. Funct. Anal., 2013).

Summary

We haven't generated a summary for this paper yet.