Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised GAN Watermarking for Intellectual Property Protection (2209.03466v1)

Published 7 Sep 2022 in cs.CV and cs.AI

Abstract: We propose a watermarking method for protecting the Intellectual Property (IP) of Generative Adversarial Networks (GANs). The aim is to watermark the GAN model so that any image generated by the GAN contains an invisible watermark (signature), whose presence inside the image can be checked at a later stage for ownership verification. To achieve this goal, a pre-trained CNN watermarking decoding block is inserted at the output of the generator. The generator loss is then modified by including a watermark loss term, to ensure that the prescribed watermark can be extracted from the generated images. The watermark is embedded via fine-tuning, with reduced time complexity. Results show that our method can effectively embed an invisible watermark inside the generated images. Moreover, our method is a general one and can work with different GAN architectures, different tasks, and different resolutions of the output image. We also demonstrate the good robustness performance of the embedded watermark against several post-processing, among them, JPEG compression, noise addition, blurring, and color transformations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jianwei Fei (8 papers)
  2. Zhihua Xia (21 papers)
  3. Benedetta Tondi (43 papers)
  4. Mauro Barni (56 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.