Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overcoming entropic limitations on asymptotic state transformations through probabilistic protocols (2209.03362v3)

Published 7 Sep 2022 in quant-ph, math-ph, and math.MP

Abstract: The quantum relative entropy is known to play a key role in determining the asymptotic convertibility of quantum states in general resource-theoretic settings, often constituting the unique monotone that is relevant in the asymptotic regime. We show that this is no longer the case when one allows stochastic protocols that may only succeed with some probability, in which case the quantum relative entropy is insufficient to characterize the rates of asymptotic state transformations, and a new entropic quantity based on a regularization of the Hilbert projective metric comes into play. Such a scenario is motivated by a setting where the cost associated with transformations of quantum states, typically taken to be the number of copies of a given state, is instead identified with the size of the quantum memory needed to realize the protocol. Our approach allows for constructing transformation protocols that achieve strictly higher rates than those imposed by the relative entropy. Focusing on the task of resource distillation, we give broadly applicable strong converse bounds on the asymptotic rates of probabilistic distillation protocols, and show them to be tight in relevant settings such as entanglement distillation with non-entangling operations. This generalizes and extends previously known limitations that only applied to deterministic protocols. Our methods are based on recent results for probabilistic one-shot transformations as well as a new asymptotic equipartition property for the projective relative entropy.

Summary

We haven't generated a summary for this paper yet.