On Multiple $L_p$-curvilinear-Brunn-Minkowski inequalities (2209.03104v1)
Abstract: We construct the extension of the curvilinear summation for bounded Borel measurable sets to the $L_p$ space for multiple power parameter $\bar{\alpha}=(\alpha_1, \cdots, \alpha_{n+1})$ when $p>0$. Based on this $L_{p,\bar{\alpha}}$-curvilinear summation for sets and concept of {\it compression} of sets, the $L_{p,\bar{\alpha}}$-curvilinear-Brunn-Minkowski inequality for bounded Borel measurable sets and its normalized version are established. Furthermore, by utilizing the hypo-graphs for functions, we enact a brand new proof of $L_{p,\bar{\alpha}}$ Borell-Brascamp-Lieb inequality, as well as its normalized version, for functions containing the special case of $L_{p}$ Borell-Brascamp-Lieb inequality through the $L_{p,\bar{\alpha}}$-curvilinear-Brunn-Minkowski inequality for sets. Moreover, we propose the multiple power $L_{p,\bar{\alpha}}$-supremal-convolution for two functions together with its properties. Last but not least, we introduce the definition of the surface area originated from the variation formula of measure in terms of the $L_{p,\bar{\alpha}}$-curvilinear summation for sets as well as $L_{p,\bar{\alpha}}$-supremal-convolution for functions together with their corresponding Minkowski type inequalities and isoperimetric inequalities for $p\geq1,$ etc.