Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the homology growth and the $\ell^2$-Betti numbers of $\mathrm{Out}(W_n)$ (2209.02760v1)

Published 6 Sep 2022 in math.GR, math.AT, and math.GT

Abstract: Let $n\ge 3$, and let $\mathrm{Out}(W_n)$ be the outer automorphism group of a free Coxeter group $W_n$ of rank $n$. We study the growth of the dimension of the homology groups (with coefficients in any field $\mathbb{K}$) along Farber sequences of finite-index subgroups of $\mathrm{Out}(W_n)$. We show that, in all degrees up to $\lfloor\frac{n}{2}\rfloor-1$, these Betti numbers grow sublinearly in the index of the subgroup. When $\mathbb{K}=\mathbb{Q}$, through L\"uck's approximation theorem, this implies that all $\ell2$-Betti numbers of $\mathrm{Out}(W_n)$ vanish up to degree $\lfloor\frac{n}{2}\rfloor-1$. In contrast, in top dimension equal to $n-2$, an argument of Gaboriau and No^us implies that the $\ell2$-Betti number does not vanish. We also prove that the torsion growth of the integral homology is sublinear. Our proof of these results relies on a recent method introduced by Ab\'ert, Bergeron, Fr\k{a}czyk and Gaboriau. A key ingredient is to show that a version of the complex of partial bases of $W_n$ has the homotopy type of a bouquet of spheres of dimension $\lfloor\frac{n}{2}\rfloor-1$.

Summary

We haven't generated a summary for this paper yet.