Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk Aware Adaptive Belief-dependent Probabilistically Constrained Continuous POMDP Planning (2209.02679v2)

Published 6 Sep 2022 in cs.AI and cs.RO

Abstract: Although risk awareness is fundamental to an online operating agent, it has received less attention in the challenging continuous domain and under partial observability. This paper presents a novel formulation and solution for risk-averse belief-dependent probabilistically constrained continuous POMDP. We tackle a demanding setting of belief-dependent reward and constraint operators. The probabilistic confidence parameter makes our formulation genuinely risk-averse and much more flexible than the state-of-the-art chance constraint. Our rigorous analysis shows that in the stiffest probabilistic confidence case, our formulation is very close to chance constraint. However, our probabilistic formulation allows much faster and more accurate adaptive acceptance or pruning of actions fulfilling or violating the constraint. In addition, with an arbitrary confidence parameter, we did not find any analogs to our approach. We present algorithms for the solution of our formulation in continuous domains. We also uplift the chance-constrained approach to continuous environments using importance sampling. Moreover, all our presented algorithms can be used with parametric and nonparametric beliefs represented by particles. Last but not least, we contribute, rigorously analyze and simulate an approximation of chance-constrained continuous POMDP. The simulations demonstrate that our algorithms exhibit unprecedented celerity compared to the baseline, with the same performance in terms of collisions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.