Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instance Attack:An Explanation-based Vulnerability Analysis Framework Against DNNs for Malware Detection (2209.02453v1)

Published 6 Sep 2022 in cs.CR and cs.AI

Abstract: Deep neural networks (DNNs) are increasingly being applied in malware detection and their robustness has been widely debated. Traditionally an adversarial example generation scheme relies on either detailed model information (gradient-based methods) or lots of samples to train a surrogate model, neither of which are available in most scenarios. We propose the notion of the instance-based attack. Our scheme is interpretable and can work in a black-box environment. Given a specific binary example and a malware classifier, we use the data augmentation strategies to produce enough data from which we can train a simple interpretable model. We explain the detection model by displaying the weight of different parts of the specific binary. By analyzing the explanations, we found that the data subsections play an important role in Windows PE malware detection. We proposed a new function preserving transformation algorithm that can be applied to data subsections. By employing the binary-diversification techniques that we proposed, we eliminated the influence of the most weighted part to generate adversarial examples. Our algorithm can fool the DNNs in certain cases with a success rate of nearly 100\%. Our method outperforms the state-of-the-art method . The most important aspect is that our method operates in black-box settings and the results can be validated with domain knowledge. Our analysis model can assist people in improving the robustness of malware detectors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.