Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards non-linear quadrature formulae (2209.02302v2)

Published 6 Sep 2022 in math.NA, cs.NA, hep-lat, and physics.comp-ph

Abstract: Prompted by an observation about the integral of exponential functions of the form $f(x)=\lambda\mathrm{e}{\alpha x}$, we investigate the possibility to exactly integrate families of functions generated from a given function by scaling or by affine transformations of the argument using nonlinear generalizations of quadrature formulae. The main result of this paper is that such formulae can be explicitly constructed for a wide class of functions, and have the same accuracy as Newton-Cotes formulae based on the same nodes. We also show how Newton-Cotes formulae emerge as the linear case of our general formalism, and demonstrate the usefulness of the nonlinear formulae in the context of the Pad\'e-Laplace method of exponential analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.