Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$f(R)$ gravity with broken Weyl gauge symmetry, cosmological backreaction, and its effects on CMB anisotropy (2209.02277v3)

Published 6 Sep 2022 in gr-qc and astro-ph.CO

Abstract: We propose a new class of $f(R)$ theory where its Weyl gauge symmetry is broken in the primordial era of the universe. This symmetry forces one to adopt a new scalar field, namely a Weyl field and a gauge vector boson. Furthermore, an equivalent form of the Einstein-Hilbert Lagrangian with a non-minimally coupled scalar field corresponding to the function $f(R)$ is found. Due to the geometrical feature of the Weyl field, it turns out that the symmetry breaking induces a non-minimal coupling, which cannot be expected in the standard $f(R)$ theories. We explain how this affects the evolution of the universe at cosmological scales. It is shown that there may be a value shift in the Planck constant and the cosmological constant. This can be regarded as a genuine exemplification of the cosmological backreaction. Furthermore, one also finds new features in the evolution of perturbational variables and cosmic microwave background anisotropy. Moreover, we prove that when a specific $f(R)$ model invokes inflation, the amplitude of the primordial gravitational waves affects the evolution of scalar perturbation due to the new non-minimal coupling. As a case study, we explain how this can be embodied in the Starobinsky inflation. Finally, we discuss some impacts that this physics can bear and the possibility of giving a new restriction of the estimation of cosmological variables such as the gravitational wave amplitude with experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Peter W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett., 13:508–509, Oct 1964.
  2. ATLAS collaboration. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012.
  3. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett., 48:1220–1223, Apr 1982.
  4. Daniel Boyanovsky. Spontaneous symmetry breaking in inflationary cosmology: On the fate of goldstone bosons. Phys. Rev. D, 86:023509, Jul 2012.
  5. Electroweak vacua, collider phenomenology, and possible connection with dark energy. Phys. Rev. D, 79:103003, May 2009.
  6. Symmetry breaking and onset of cosmic acceleration in scalar field models. Physics of the Dark Universe, 14:40–47, 2016.
  7. D Kazanas. Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J., Lett. Ed.; (United States), 241:2, 10 1980.
  8. Cosmological symmetry breaking, pseudo-scale invariance, dark energy and the standard model. Modern Physics Letters A, 22(22):1651–1661, 2007.
  9. M. Sami and Radouane Gannouji. Spontaneous symmetry breaking in the late universe and glimpses of the early universe phase transitions à la baryogenesis. International Journal of Modern Physics D, 30(13):2130005, 2021.
  10. Robert Bluhm. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys. Rev. D, 91:065034, Mar 2015.
  11. Amir Ghalee. Notes on diffeomorphisms symmetry of f(r) gravity in the cosmological context. The European Physical Journal C volume 76, 136, 2016.
  12. Hermann Weyl. Eine neue erweiterung der relativitätstheorie. Annalen der Physik, 364, 101-133, 1919.
  13. Hermann Weyl. Space, Time, Matter. Dover, New York, 1952.
  14. J. B. Fonseca-Neto C. Romero and M. L. Pucheu. General relativity and weyl geometry. Class. Quantum Grav. 29 155015, 2012.
  15. From brans-dicke gravity to a geometrical scalar-tensor theory. Phys. Rev. D, 89:064047, Mar 2014.
  16. M. Montes José Edgar Madriz Aguilar. Interacting quintessence from new formalism of gravitoelectromagnetism formulated on a geometrical scalar–tensor gauge theory of gravity. Physics of the Dark Universe, 21:47–54, September 2018.
  17. D.M. Ghilencea. Spontaneous breaking of weyl quadratic gravity to einstein action and higgs potential. J. High Energ. Phys. 2019, 49, 2019.
  18. Inflation as a spontaneous symmetry breaking of weyl symmetry. JCAP 01, 022, 2019.
  19. Weyl gauge symmetry and its spontaneous breaking in the standard model and inflation. Phys. Rev. D, 99:115007, Jun 2019.
  20. Gauge invariant fluctuations of the metric during inflation from a new scalar-tensor weyl-integrable gravity model. Phys. Rev. D, 94:064075, Sep 2016.
  21. Cosmological models in weyl geometrical scalar-tensor theory. Phys. Rev. D, 94:064010, Sep 2016.
  22. Probing primordial symmetry breaking with the cosmic microwave background anisotropy. Phys. Rev. D, 101:123528, Jun 2020.
  23. A. Zee. Broken-symmetric theory of gravity. Phys. Rev. Lett., 42:417–421, Feb 1979.
  24. De Felice A. and S. Tsujikawa. f(r) theories. Living Rev. Relativ. 13, 3, 2010.
  25. S. Nojiri and S. D. Odintsov. Unified cosmic history in modified gravity: from f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) theory to lorentz non-invariant models. Phys. Rept. 505 (2011), 59-144, 2011.
  26. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rept. 692 (2017), 1-104, 2017.
  27. A. A. Starobinsky. Spectrum of relict gravitational radiation and the early state of the universe. Journal of Experimental and Theoretical Physics Letters, 30, 682, 1979.
  28. Thomas Tram Diego Blas, Julien Lesgourgues. The cosmic linear anisotropy solving system (class) ii: Approximation schemes. JCAP 07 (2011) 034, 2011.
  29. Efficient computation of cosmic microwave background anisotropies in closed friedmann-robertson-walker models. ApJ 538 473, 2000.
  30. Planck Collaboration. Planck 2018 results - vi. cosmological parameters. A&A, 641:A6, 2020.
  31. Oliver Piattella. Lecture Notes in Cosmology. Springer Cham, 2018.
  32. Antony Lewis Jesus Torrado. Cobaya: Code for bayesian analysis of hierarchical physical models. JCAP 05 (2021) 057, 2021.
  33. Antony Lewis Jesus Torrado. Cobaya: Bayesian analysis in cosmology. Astrophysics Source Code Library, record ascl:1910.019, 2019.
  34. Planck Collaboration. Planck 2018 results. v. cmb power spectra and likelihoods. A&A 641, A5 (2020), 2020.
  35. Planck Collaboration. Planck 2018 results. viii. gravitational lensing. A&A 641, A8 (2020), 2020.
  36. BICEP/Keck Collaboration. Bicep / keck xiii: Improved constraints on primordial gravitational waves using planck, wmap, and bicep/keck observations through the 2018 observing season. Phys. Rev. Lett. 127, 151301 (2021), 2021.
  37. Generalized brans-dicke theories in light of evolving dark energy. Phys. Rev. D, 101:043518, Feb 2020.
  38. Testing extended jordan-brans-dicke theories with future cosmological observations. Journal of Cosmology and Astroparticle Physics, 2019(05):049–049, may 2019.
  39. Palatini versus metric formulation in higher-curvature gravity. Journal of Cosmology and Astroparticle Physics, 2008(11):008, nov 2008.
  40. Thomas P Sotiriou. Constraining f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) gravity in the palatini formalism. Classical and Quantum Gravity, 23(4):1253–1267, feb 2006.
  41. f(R) gravity theories in the Palatini formalism constrained from strong lensing. Monthly Notices of the Royal Astronomical Society, 394(3):1449–1458, 04 2009.
  42. Noether gauge symmetry for f(r) gravity in palatini formalism. Astrophys Space Sci 338, 211–216, 2012.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com