Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An invariance principle for one-dimensional random walks in degenerate dynamical random environments (2209.02246v1)

Published 6 Sep 2022 in math.PR, math-ph, math.AP, and math.MP

Abstract: We study random walks on the integers driven by a sample of time-dependent nearest-neighbor conductances that are bounded but are permitted to vanish over time intervals of positive Lebesgue-length. Assuming only ergodicity of the conductance law under space-time shifts and a moment assumption on the time to accumulate a unit conductance over a given edge, we prove that the walk scales, under a diffusive scaling of space and time, to a non-degenerate Brownian motion for a.e. realization of the environment. The conclusion particularly applies to random walks on one-dimensional dynamical percolation subject to fairly general stationary edge-flip dynamics.

Summary

We haven't generated a summary for this paper yet.