Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When Robotics Meets Wireless Communications: An Introductory Tutorial (2209.02021v5)

Published 5 Sep 2022 in cs.RO, cs.SY, eess.SP, and eess.SY

Abstract: The importance of ground Mobile Robots (MRs) and Unmanned Aerial Vehicles (UAVs) within the research community, industry, and society is growing fast. Many of these agents are nowadays equipped with communication systems that are, in some cases, essential to successfully achieve certain tasks. In this context, we have begun to witness the development of a new interdisciplinary research field at the intersection of robotics and communications. This research field has been boosted by the intention of integrating UAVs within the 5G and 6G communication networks. This research will undoubtedly lead to many important applications in the near future. Nevertheless, one of the main obstacles to the development of this research area is that most researchers address these problems by oversimplifying either the robotics or the communications aspect. This impedes the ability of reaching the full potential of this new interdisciplinary research area. In this tutorial, we present some of the modelling tools necessary to address problems involving both robotics and communication from an interdisciplinary perspective. As an illustrative example of such problems, we focus in this tutorial on the issue of communication-aware trajectory planning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (188)
  1. A. Gasparri, L. Sabattini, and G. Ulivi, “Bounded Control Law for Global Connectivity Maintenance in Cooperative Multirobot Systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 700–717, 2017.
  2. Y. Gao, H. Chen, Y. Li, C. Lyu, and Y. Liu, “Autonomous Wi-Fi Relay Placement With Mobile Robots,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 6, pp. 2532–2542, 2017.
  3. V. S. Varadharajan et al., “Swarm Relays: Distributed Self-Healing Ground-and-Air Connectivity Chains,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5347–5354, 2020.
  4. D. Bonilla Licea, M. Bonilla, M. Ghogho, S. Lasaulce, and V. S. Varma, “Communication-Aware Energy Efficient Trajectory Planning With Limited Channel Knowledge,” IEEE Transactions on Robotics, vol. 36, no. 2, pp. 431–442, 2020.
  5. U. Ali, Hong Cai, Y. Mostofi, and Y. Wardi, “Motion and communication co-optimization with path planning and online channel prediction,” in 2016 American Control Conference (ACC), 2016, pp. 7079–7084.
  6. A. Muralidharan and Y. Mostofi, “First passage distance to connectivity for mobile robots,” in 2017 American Control Conference (ACC), 2017, pp. 1517–1523.
  7. D. Bonilla Licea, M. Bonilla, M. Ghogho, and M. Malabre, “UAV Trajectory Planning for Delay Tolerant Communications,” in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 4166–4171.
  8. U. Ali, H. Cai, Y. Mostofi, and Y. Wardi, “Motion-Communication Co-Optimization With Cooperative Load Transfer in Mobile Robotics: An Optimal Control Perspective,” IEEE Transactions on Control of Network Systems, vol. 6, no. 2, pp. 621–632, 2019.
  9. Y. Kantaros et al., “Temporal Logic Task Planning and Intermittent Connectivity Control of Mobile Robot Networks,” IEEE Transactions on Automatic Control, vol. 64, no. 10, pp. 4105–4120, 2019.
  10. Y. Zeng and R. Zhang, “Energy-Efficient UAV Communication With Trajectory Optimization,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747–3760, 2017.
  11. Q. Wu, Y. Zeng, and R. Zhang, “Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.
  12. C. Zhan, Y. Zeng, and R. Zhang, “Energy-Efficient Data Collection in UAV Enabled Wireless Sensor Network,” IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 328–331, 2018.
  13. X. Liu et al., “Throughput Optimization of Blocked Data Transmission: A Mobile-Relay-UAV-Assisted Approach,” in IEEE International Conference on Computer and Communications, 2019, pp. 792–796.
  14. S. Ahmed, M. Z. Chowdhury, and Y. M. Jang, “Energy-Efficient UAV Relaying Communications to Serve Ground Nodes,” IEEE Communications Letters, vol. 24, no. 4, pp. 849–852, 2020.
  15. M. T. Dabiri and S. M. S. Sadough, “Optimal Placement of UAV-Assisted Free-Space Optical Communication Systems With DF Relaying,” IEEE Communications Letters, vol. 24, no. 1, pp. 155–158, 2020.
  16. M. I. Khalil, “Energy Efficiency Maximization of Relay Aerial Robotic Networks,” IEEE Transactions on Green Communications and Networking, vol. 4, no. 4, pp. 1081–1090, 2020.
  17. A. Zhou et al., “Robotic Millimeter-Wave Wireless Networks,” IEEE/ACM Transactions on Networking, vol. 28, no. 4, pp. 1534–1549, 2020.
  18. M. Debashisha and N. Enrico, “A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements,” Computer Networks, vol. 182, pp. 1–25, 2020.
  19. Y. Zeng, Q. Wu, and R. Zhang, “Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond,” Proceedings of the IEEE, vol. 107, no. 12, pp. 2327–2375, 2019.
  20. S. Chung et al., “A Survey on Aerial Swarm Robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855, 2018.
  21. D. Bonilla Licea, D. McLernon, and M. Ghogho, “Mobile Robot Path Planners With Memory for Mobility Diversity Algorithms,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 419–431, 2017.
  22. J. Fink et al., “Robust Control of Mobility and Communications in Autonomous Robot Teams,” IEEE Access, vol. 1, pp. 290–309, 2013.
  23. M. Coppola et al., “A Survey on Swarming With Micro Air Vehicles: Fundamental Challenges and Constraints,” Frontiers in Robotics and AI, vol. 7, p. 18, 2020.
  24. M. Calvo-Fullana, A. Pyattaev, D. Mox, S. Andreev, and A. Ribeiro, “Communications and Robotics Simulation in UAVs: A Case Study on Aerial Synthetic Aperture Antennas,” IEEE Communications Magazine, vol. 59, no. 1, pp. 22–27, 2021.
  25. M. Calvo-Fullana et al., “ROS-NetSim: A Framework for the Integration of Robotic and Network Simulators,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1120–1127, 2021.
  26. M. Guo and M. M. Zavlanos, “Multirobot Data Gathering Under Buffer Constraints and Intermittent Communication,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1082–1097, 2018.
  27. M. Lindhe and K. H. Johansson, “Using robot mobility to exploit multipath fading,” IEEE Wireless Communications, vol. 16, no. 1, pp. 30–37, 2009.
  28. O. M. Bushnaq, A. Celik, H. Elsawy, M. Alouini, and T. Y. Al-Naffouri, “Aeronautical Data Aggregation and Field Estimation in IoT Networks: Hovering and Traveling Time Dilemma of UAVs,” IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp. 4620–4635, 2019.
  29. Y. Sun et al., “Optimal 3D-Trajectory Design and Resource Allocation for Solar-Powered UAV Communication Systems,” IEEE Transactions on Communications, vol. 67, no. 6, pp. 4281–4298, 2019.
  30. X. Dai et al., “Energy-Efficient UAV Communications in the Presence of Wind: 3D Modeling and Trajectory Design,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  31. D. Bonilla Licea, M. Bonilla E., M. Ghogho, and M. Saska, “Energy-Efficient Fixed-Wing UAV Relay With Considerations of Airframe Shadowing,” IEEE Communications Letters, vol. 27, no. 6, pp. 1550–1554, 2023.
  32. H. Kim and B. K. Kim, “Minimum-energy trajectory planning and control on a straight line with rotation for three-wheeled omni-directional mobile robots,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 3119–3124.
  33. P. F. Mulr and C. P. Neuman, “Kinematic modeling of wheeled mobile robots,” Journal of Robotic Systems, vol. 4, no. 2, pp. 281–340, 1987.
  34. ——, “Kinematic modeling of wheeled mobile robots,” Journal of Robotic Systems, vol. 8, no. 2, pp. 281–340, 1987.
  35. H. Kim and B. K. Kim, “Minimum-Energy Translational Trajectory Generation for Differential-Driven Wheeled Mobile Robots,” in J Intell Robot Syst, vol. 49, 2007, pp. 367–383.
  36. A. J. Weinstein and K. L. Moore, “Pose estimation of Ackerman steering vehicles for outdoors autonomous navigation,” in 2010 IEEE International Conference on Industrial Technology, 2010, pp. 579–584.
  37. H. J. Kim and B. K. Kim, “Minimum-energy trajectory planning on a tangent for battery-powered three-wheeled omni-directional mobile robots,” in ICCAS 2010, 2010, pp. 1701–1706.
  38. N. Tan et al., “Neural-Network-Based Control of Wheeled Mobile Manipulators With Unknown Kinematic Models,” in 2020 International Symposium on Autonomous Systems (ISAS), 2020, pp. 212–216.
  39. U. Ali et al., “An optimal control approach for communication and motion co-optimization in realistic fading environments,” in 2015 American Control Conference (ACC), 2015, pp. 2930–2935.
  40. H. Kim and B. K. Kim, “Minimum-energy cornering trajectory planning with self-rotation for three-wheeled omni-directional mobile robots,” in Int. J. Control Autom. Syst., vol. 15, 2017, p. 1857–1866.
  41. P. Tokekar, N. Karnad, and V. Isler, “Energy-optimal trajectory planning for car-like robots,” Autonomous Robots, vol. 37, p. 279–300, 2014.
  42. S. Liu and D. Sun, “Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 401–411, 2014.
  43. Yongguo Mei et al., “Energy-efficient motion planning for mobile robots,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 5, 2004, pp. 4344–4349 Vol.5.
  44. Yongguo Mei, Yung-Hsiang Lu, Y. C. Hu, and C. S. G. Lee, “Deployment of mobile robots with energy and timing constraints,” IEEE Transactions on Robotics, vol. 22, no. 3, pp. 507–522, 2006.
  45. Guiling Wang et al., “Optimizing sensor movement planning for energy efficiency,” in ISLPED ’05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005., 2005, pp. 215–220.
  46. F. El-Moukaddem, E. Torng, and G. Xing, “Mobile Relay Configuration in Data-Intensive Wireless Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 2, pp. 261–273, 2013.
  47. Chiping Tang and P. K. McKinley, “Energy Optimization under Informed Mobility,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 9, pp. 947–962, 2006.
  48. C. C. Ooi and C. Schindelhauer, “Minimal Energy Path Planning for Wireless Robots,” Mobile Networks and Applications, vol. 14, no. 3, pp. 309–321, 2009.
  49. Y. Mei, Y. Lu, Y. C. Hu, and C. G. Lee, “A Case Study of Mobile Robot’s Energy Consumption and Conservation Techniques,” in 2th International Conference on Advanced Robotics, 2005.
  50. W. Youn and S. Andrew Gadsden, “Combined Quaternion-Based Error State Kalman Filtering and Smooth Variable Structure Filtering for Robust Attitude Estimation,” IEEE Access, vol. 7, pp. 148 989–149 004, 2019.
  51. G. Michieletto et al., “Hierarchical nonlinear control for multi-rotor asymptotic stabilization based on zero-moment direction,” Automatica, vol. 117, p. 108991, 2020.
  52. J. Diebel, “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors,” 2006.
  53. R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor,” IEEE Robotics Automation Magazine, vol. 19, no. 3, pp. 20–32, 2012.
  54. F. Morbidi, R. Cano, and D. Lara, “Minimum-energy path generation for a quadrotor UAV,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 1492–1498.
  55. F. Yacef, N. Rizoug, L. Degaa, O. Bouhali, and M. Hamerlain, “Trajectory optimisation for a quadrotor helicopter considering energy consumption,” in 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), 2017, pp. 1030–1035.
  56. W. Green and P. Oh, “Autonomous hovering of a fixed-wing micro air vehicle,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006, pp. 2164–2169.
  57. I. Lugo-Cárdenas, G. Flores, S. Salazar, and R. Lozano, “Dubins path generation for a fixed wing UAV,” in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 339–346.
  58. J. W. Langelaan, N. Alley, and J. Neidhoefer, “Wind Field Estimation for Small Unmanned Aerial Vehicles,” Journal of Guidance, Control, and Dynamics, vol. 34, no. 4, pp. 1016–1030, 2011. [Online]. Available: https://doi.org/10.2514/1.52532
  59. R. W. Beard, J. Ferrin, and J. Humpherys, “Fixed Wing UAV Path Following in Wind With Input Constraints,” IEEE Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2103–2117, 2014.
  60. T. A. Johansen et al., “On estimation of wind velocity, angle-of-attack and sideslip angle of small UAVs using standard sensors,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 510–519.
  61. K. T. Borup et al., “Kalman Filters for Air Data System Bias Correction for a Fixed-Wing UAV,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2164–2176, 2020.
  62. P. J. Nguyen-Tuong D., “Model learning for robot control: a survey,” Cognitive Process, vol. 12, p. 319–340, 2011.
  63. P. Liu, D. W. Matolak, B. Ai, and R. Sun, “Path Loss Modeling for Vehicle-to-Vehicle Communication on a Slope,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2954–2958, 2014.
  64. B. Sklar, “Rayleigh fading channels in mobile digital communication systems .I. Characterization,” IEEE Communications Magazine, vol. 35, no. 7, pp. 90–100, 1997.
  65. A. F. Molisch et al., “A survey on vehicle-to-vehicle propagation channels,” IEEE Wireless Communications, vol. 16, no. 6, pp. 12–22, 2009.
  66. A. E. Forooshani et al., “A Survey of Wireless Communications and Propagation Modeling in Underground Mines,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp. 1524–1545, 2013.
  67. N. ryul Jeon et al., “Performance of Channel Prediction Using 3D Ray-tracing Scheme Compared to Conventional 2D Scheme,” in Asia-Pacific Conference on Communications, 2006.
  68. R. Zentner and A. K. Mucalo, “Ray Tracing Interpolation for Continuous Modeling of Double Directional Radio Channel,” in Eurocon, 2013.
  69. O. Stabler and R. Hoppe, “MIMO channel capacity computed with 3D ray tracing model,” in 3rd European Conference on Antennas and Propagation, 2009.
  70. S. Y. Seidel and T. S. Rappaport, “914 MHz path loss prediction models for indoor wireless communications in multifloored buildings,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 2, pp. 207–217, 1992.
  71. Kwok-Wai Cheung, J. H. . Sau, and R. D. Murch, “A new empirical model for indoor propagation prediction,” IEEE Transactions on Vehicular Technology, vol. 47, no. 3, pp. 996–1001, 1998.
  72. Y. Mostofi et al., “Estimation of communication signal strength in robotic networks,” in 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 1946–1951.
  73. M. Malmirchegini and Y. Mostofi, “On the Spatial Predictability of Communication Channels,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 964–978, 2012.
  74. M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” Electronics Letters, vol. 27, pp. 2145–2146(1), November 1991.
  75. F. Baccelli and X. Zhang, “A correlated shadowing model for urban wireless networks,” in 2015 IEEE Conference on Computer Communications (INFOCOM), 2015, pp. 801–809.
  76. R. D. A. Timoteo et al., “A Proposal for Path Loss Prediction in Urban Environments using Support Vector Regression,” in ICT 2014, 2014.
  77. N. C. Beaulieu and M. Naseri, “A Circuit Theory Model for Shadow Fading Autocorrelation in Wireless Radio Channels,” IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 161–164, 2019.
  78. Xiaodong Cai and G. B. Giannakis, “A two-dimensional channel simulation model for shadowing processes,” IEEE Transactions on Vehicular Technology, vol. 52, no. 6, pp. 1558–1567, 2003.
  79. A. Ghaffarkhah and Y. Mostofi, “Communication-Aware Motion Planning in Mobile Networks,” IEEE Transactions on Automatic Control, vol. 56, no. 10, pp. 2478–2485, 2011.
  80. Yahong Rosa Zheng and Chengshan Xiao, “Simulation models with correct statistical properties for Rayleigh fading channels,” IEEE Transactions on Communications, vol. 51, no. 6, pp. 920–928, 2003.
  81. A. J. Carfang et al., “Improving data ferrying by iteratively learning the radio frequency environment,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 1182–1188.
  82. S. K. Goudos and G. Athanasiadou, “Application of an Ensemble Method to UAV Power Modeling for Cellular Communications,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 11, pp. 2340–2344, 2019.
  83. J. Chen et al., “Learning radio maps for UAV-aided wireless networks: A segmented regression approach,” in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.
  84. Y. Egi and C. E. Otero, “Machine-Learning and 3D Point-Cloud Based Signal Power Path Loss Model for the Deployment of Wireless Communication Systems,” IEEE Access, vol. 7, pp. 42 507–42 517, 2019.
  85. E. Ostlin, H. Zepernick, and H. Suzuki, “Macrocell Path-Loss Prediction Using Artificial Neural Networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2735–2747, 2010.
  86. P. S. Bithas et al., “A Survey on Machine-Learning Techniques for UAV-Based Communications,” Sensors, vol. 19, no. 23, 2019.
  87. A. A. Khuwaja et al., “A Survey of Channel Modeling for UAV Communications,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 2804–2821, 2018.
  88. W. Khawaja, I. Guvenc, D. W. Matolak, U. C. Fiebig, and N. Schneckenburger, “A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp. 2361–2391, 2019.
  89. M. Asadpour, B. Van den Bergh, D. Giustiniano, K. A. Hummel, S. Pollin, and B. Plattner, “Micro aerial vehicle networks: an experimental analysis of challenges and opportunities,” IEEE Communications Magazine, vol. 52, no. 7, pp. 141–149, 2014.
  90. D. Bonilla Licea, G. Silano, M. Ghogho, and M. Saska, “Optimum Trajectory Planning for Multi-Rotor UAV Relays with Tilt and Antenna Orientation Variations,” in 2021 29th European Signal Processing Conference (EUSIPCO), 2021, pp. 1586–1590.
  91. E. Yanmaz, R. Kuschnig, and C. Bettstetter, “Channel measurements over 802.11a-based UAV-to-ground links,” in 2011 IEEE GLOBECOM Workshops (GC Wkshps), 2011, pp. 1280–1284.
  92. N. Ahmed, S. S. Kanhere, and S. Jha, “On the importance of link characterization for aerial wireless sensor networks,” IEEE Communications Magazine, vol. 54, no. 5, pp. 52–57, 2016.
  93. C. Cheng et al., “Performance Measurement of 802.11a Wireless Links from UAV to Ground Nodes with Various Antenna Orientations,” in Proceedings of 15th International Conference on Computer Communications and Networks, 2006, pp. 303–308.
  94. E. Yanmaz, R. Kuschnig, and C. Bettstetter, “Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility,” in 2013 Proceedings IEEE INFOCOM, 2013, pp. 120–124.
  95. J. Chen et al., “Impact of 3D UWB Antenna Radiation Pattern on Air-to-Ground Drone Connectivity,” in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 2018, pp. 1–5.
  96. Q. Zhang et al., “Machine Learning for Predictive On-Demand Deployment of Uavs for Wireless Communications,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.
  97. H. E. Hammouti and M. Ghogho, “Air-to-Ground Channel Modeling for UAV Communications Using 3D Building Footprints,” in Ubiquitous Networking.   Springer International Publishing, 2018, pp. 372–383.
  98. N. Goddemeier and C. Wietfeld, “Investigation of Air-to-Air Channel Characteristics and a UAV Specific Extension to the Rice Model,” in 2015 IEEE Globecom Workshops (GC Wkshps), 2015, pp. 1–5.
  99. A. Zanella, “Best Practice in RSS Measurements and Ranging,” IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp. 2662–2686, 2016.
  100. M. Lindhe and K. H. Johansson, “Communication-aware trajectory tracking,” in 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 1519–1524.
  101. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
  102. S. Yarkan, S. Guzelgoz, H. Arslan, and R. R. Murphy, “Underground Mine Communications: A Survey,” IEEE Communications Surveys Tutorials, vol. 11, no. 3, pp. 125–142, 2009.
  103. A. Hrovat, G. Kandus, and T. Javornik, “A Survey of Radio Propagation Modeling for Tunnels,” IEEE Communications Surveys Tutorials, vol. 16, no. 2, pp. 658–669, 2014.
  104. G. Geraci, A. Garcia-Rodriguez, M. M. Azari, A. Lozano, M. Mezzavilla, S. Chatzinotas, Y. Chen, S. Rangan, and M. D. Renzo, “What Will the Future of UAV Cellular Communications Be? A Flight From 5G to 6G,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1304–1335, 2022.
  105. A. Mardani, M. Chiaberge, and P. Giaccone, “Communication-Aware UAV Path Planning,” IEEE Access, vol. 7, pp. 52 609–52 621, 2019.
  106. S. De Bast et al., “Cellular Coverage-Aware Path Planning for UAVs,” in 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2019, pp. 1–5.
  107. Geopunt, “DHMV II,” http://www.geopunt.be/actualiteit/2016/april/dhmvii-volledig, [Online; accessed 17-January-2023].
  108. A. Colpaert, E. Vinogradov, and S. Pollin, “Aerial Coverage Analysis of Cellular Systems at LTE and mmWave Frequencies Using 3D City Models,” Sensors, vol. 18, no. 12, 2018.
  109. Y. Yan and Y. Mostofi, “Communication and path planning strategies of a robotic coverage operation,” in 2013 American Control Conference, 2013, pp. 860–866.
  110. R. I. Bor-Yaliniz et al., “Efficient 3-D placement of an aerial base station in next generation cellular networks,” in 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1–5.
  111. D. Bonilla Licea, M. Ghogho, D. McLernon, and S. A. R. Zaidi, “Mobility Diversity-Assisted Wireless Communication for Mobile Robots,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 214–229, 2016.
  112. H. He et al., “Joint Altitude and Beamwidth Optimization for UAV-Enabled Multiuser Communications,” IEEE Communications Letters, vol. 22, no. 2, pp. 344–347, 2018.
  113. D. S. Kalogerias and A. P. Petropulu, “Mobile beamforming and spatially controlled relay communications,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 6405–6409.
  114. E. Nurellari, D. B. Licea, and M. Ghogho, “Optimum Trajectory Planning for Robotic Data Ferries in Delay Tolerant Wireless Sensor Networks,” in 2019 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5.
  115. D. Bonilla Licea et al., “Improving Radio Energy Harvesting in Robots Using Mobility Diversity,” IEEE Transactions on Signal Processing, vol. 64, no. 8, pp. 2065–2077, 2016.
  116. Z. Liu, B. Wu, J. Dai, and H. Lin, “Distributed communication-aware motion planning for multi-agent systems from STL and SpaTeL specifications,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017, pp. 4452–4457.
  117. E. F. Flushing, L. M. Gambardella, and G. A. Di Caro, “On Using Mobile Robotic Relays for Adaptive Communication in Search and Rescue Missions,” in 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2016, pp. 370–377.
  118. A. Ghaffarkhah and Y. Mostofi, “Optimal motion and communication for persistent information collection using a mobile robot,” in 2012 IEEE Globecom Workshops, 2012, pp. 1532–1537.
  119. S. Zhang et al., “Joint Trajectory and Power Optimization for UAV Relay Networks,” IEEE Communications Letters, vol. 22, no. 1, pp. 161–164, 2018.
  120. A. Al-Hourani et al., “Optimal LAP Altitude for Maximum Coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, 2014.
  121. I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, “A prototype of an autonomous controller for a quadrotor UAV,” in 2007 European Control Conference (ECC), 2007, pp. 4001–4008.
  122. J. Vlassenbroeck and R. Van Dooren, “A Chebyshev technique for solving nonlinear optimal control problems,” IEEE Transactions on Automatic Control, vol. 33, no. 4, pp. 333–340, 1988.
  123. M. Huzmezan et al., “Multivariable Laguerre-based indirect adaptive predictive control a reliable practical solution for process control,” in IASTED Modeling and Control Conf, 2001, pp. 18–21.
  124. D. Brescianini and R. D’Andrea, “Computationally Efficient Trajectory Generation for Fully Actuated Multirotor Vehicles,” IEEE Transactions on Robotics, vol. 34, no. 3, pp. 555–571, 2018.
  125. Y. Huang et al., “Cognitive UAV Communication via Joint Trajectory and Power Control,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5.
  126. F. Ono et al., “A Wireless Relay Network Based on Unmanned Aircraft System With Rate Optimization,” IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7699–7708, 2016.
  127. E. Stump, A. Jadbabaie, and V. Kumar, “Connectivity management in mobile robot teams,” in 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 1525–1530.
  128. C. You and R. Zhang, “3D Trajectory Optimization in Rician Fading for UAV-Enabled Data Harvesting,” IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 3192–3207, 2019.
  129. M. Hua et al., “3D UAV Trajectory and Communication Design for Simultaneous Uplink and Downlink Transmission,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5908–5923, 2020.
  130. K. Liu et al., “Optimal Time Trajectory Generation and Tracking Control for Over-Actuated Multirotors With Large-Angle Maneuvering Capability,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8339–8346, 2022.
  131. J. A. Bezerra and D. A. Santos, “Optimal Exact Control Allocation for Under-Actuated Multirotor Aerial Vehicles,” IEEE Control Systems Letters, vol. 6, pp. 1448–1453, 2022.
  132. Z. Xiao et al., “Unmanned Aerial Vehicle Base Station (UAV-BS) Deployment With Millimeter-Wave Beamforming,” IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1336–1349, 2020.
  133. J. Chen and D. Gesbert, “Optimal positioning of flying relays for wireless networks: A LOS map approach,” in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.
  134. Y. Zeng, R. Zhang, and T. J. Lim, “Throughput Maximization for UAV-Enabled Mobile Relaying Systems,” IEEE Transactions on Communications, vol. 64, no. 12, pp. 4983–4996, 2016.
  135. X. Hu et al., “UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization,” IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp. 4738–4752, 2019.
  136. M. Mozaffari et al., “Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications,” IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7574–7589, 2017.
  137. H. Shakhatreh et al., “Efficient 3D placement of a UAV using particle swarm optimization,” in 2017 8th International Conference on Information and Communication Systems (ICICS), 2017, pp. 258–263.
  138. Y. Chen et al., “A 3D Placement of Unmanned Aerial Vehicle Base Station Based on Multi-Population Genetic Algorithm for Maximizing Users with Different QoS Requirements,” in 2018 IEEE 18th International Conference on Communication Technology (ICCT), 2018, pp. 967–972.
  139. E. Bulut and I. Guevenc, “Trajectory Optimization for Cellular-Connected UAVs with Disconnectivity Constraint,” in 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018, pp. 1–6.
  140. L. Ding et al., “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Transactions on Communications, vol. 52, no. 1, pp. 159–165, 2004.
  141. D. Morgan et al., “A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3852–3860, 2006.
  142. M. Askari et al., “Stability of Soft-Constrained Finite Horizon Model Predictive Control,” IEEE Transactions on Industry Applications, vol. 53, no. 6, pp. 5883–5892, 2017.
  143. H. Schepker, S. Nordholm, and S. Doclo, “Acoustic Feedback Suppression for Multi-Microphone Hearing Devices Using a Soft-Constrained Null-Steering Beamformer,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 929–940, 2020.
  144. E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact penalty functions in model predictive control,” in UKACC International Conference, Cambridge, 2000, pp. 1–6.
  145. Q. Chen et al., “Soft-Constrained Random Walk Propagation for Hierarchical Image Matting,” in 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), 2016, pp. 626–630.
  146. S. DorMohammadi and M. Rais-Rohani, “Exponential penalty function formulation for multilevel optimization using the analytical target cascading framework,” STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, vol. 47, no. 4, pp. 599–612, APR 2013.
  147. C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer Programming Formulation of Traveling Salesman Problems,” J. ACM, vol. 7, no. 4, p. 326–329, oct 1960. [Online]. Available: https://doi.org/10.1145/321043.321046
  148. O. M. Bushnaq et al., “Aeronautical Data Aggregation and Field Estimation in IoT Networks: Hovering and Traveling Time Dilemma of UAVs,” IEEE Transactions on Wireless Communications, vol. 18, no. 10, pp. 4620–4635, 2019.
  149. E. Rossi et al., “Online Nonlinear Model Predictive Control for tethered UAVs to perform a safe and constrained maneuver,” in 2019 18th European Control Conference (ECC), 2019, pp. 3996–4001.
  150. Y. Yan and Y. Mostofi, “To Go or Not to Go: On Energy-Aware and Communication-Aware Robotic Operation,” IEEE Transactions on Control of Network Systems, vol. 1, no. 3, pp. 218–231, 2014.
  151. D. Bonilla Licea et al., “An energy saving robot mobility diversity algorithm for wireless communications,” in 21st European Signal Processing Conference (EUSIPCO 2013), 2013, pp. 1–5.
  152. D. Bonilla Licea, D. McLernon, and M. Ghogho, “Designing optimal trajectory planners for robotic communications,” in IET Intelligent Signal Processing Conference 2013 (ISP 2013), 2013, pp. 1–6.
  153. D. Bonilla Licea, E. Nurellari, and M. Ghogho, “Energy-Efficient 3D UAV Trajectory Design for Data Collection in Wireless Sensor Networks,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8329–8333.
  154. A. Muralidharan and Y. Mostofi, “Path Planning for a Connectivity Seeking Robot,” in 2017 IEEE Globecom Workshops (GC Wkshps), 2017, pp. 1–6.
  155. ——, “Distributed beamforming using mobile robots,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 6385–6389.
  156. D. Bonilla Licea, V. S. Varma, S. Lasaulce, J. Daafouz, and M. Ghogho, “Trajectory planning for energy-efficient vehicles with communications constraints,” in 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), 2016, pp. 264–270.
  157. D. Bonilla Licea, V. S. Varma, S. Lasaulce, J. Daafouz, M. Ghogho, and D. McLernon, “Robust Trajectory Planning for Robotic Communications Under Fading Channels,” in Ubiquitous Networking, E. Sabir, A. García Armada, M. Ghogho, and M. Debbah, Eds.   Cham: Springer International Publishing, 2017, pp. 450–460.
  158. A. Muralidharan and Y. Mostofi, “Communication-Aware Robotics: Exploiting Motion for Communication,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, no. 1, pp. 115–139, 2021.
  159. O. Tekdas and V. Isler, “Robotic routers,” in 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 1513–1518.
  160. H. Oh et al., “Communication-aware convoy following guidance for UAVs in a complex urban environment,” in 2016 24th Mediterranean Conference on Control and Automation (MED), 2016, pp. 1230–1235.
  161. K. Kim et al., “Mobile Autonomous Router System for Dynamic (Re)formation of Wireless Relay Networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 9, pp. 1828–1841, 2013.
  162. D. Bonilla Licea, E. Nurellari, and M. Ghogho, “Energy Balancing for Robotic Aided Clustered Wireless Sensor Networks Using Mobility Diversity Algorithms,” in 2018 26th European Signal Processing Conference (EUSIPCO), 2018, pp. 1815–1819.
  163. J. Liu et al., “UAV-Aided Data Collection for Information Freshness in Wireless Sensor Networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2368–2382, 2021.
  164. G. Chen, C. Cheng, X. Xu, and Y. Zeng, “Minimizing the Age of Information for Data Collection by Cellular-Connected UAV,” IEEE Transactions on Vehicular Technology, pp. 1–5, 2023.
  165. L. Chiaraviglio et al., “Joint Optimization of Area Throughput and Grid-Connected Microgeneration in UAV-Based Mobile Networks,” IEEE Access, vol. 7, pp. 69 545–69 558, 2019.
  166. A. Alsharoa et al., “Spatial and Temporal Management of Cellular HetNets with Multiple Solar Powered Drones,” IEEE Transactions on Mobile Computing, vol. 19, no. 4, pp. 954–968, 2020.
  167. D. Puccinelli and M. Haenggi, “Spatial Diversity Benefits by Means of Induced Fading,” in 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, vol. 1, 2006, pp. 128–137.
  168. D. Bonilla Licea, D. McLernon, M. Ghogho, E. Nurellari, and S. A. Raza Zaidi, “Robotic Mobility Diversity Algorithm with Continuous Search Space,” in 2018 26th European Signal Processing Conference (EUSIPCO), 2018, pp. 702–706.
  169. D. Bonilla Licea, M. Ghogho, D. McLernon, and S. A. R. Zaidi, “Antenna Controller for Low-latency and High Reliability Robotic Communications over Time-varying Fading Channels,” in 2019 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5.
  170. G. Geraci et al., “Supporting UAV Cellular Communications through Massive MIMO,” in 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018, pp. 1–6.
  171. A. Farajzadeh, O. Ercetin, and H. Yanikomeroglu, “UAV Data Collection Over NOMA Backscatter Networks: UAV Altitude and Trajectory Optimization,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–7.
  172. H. El Hammouti, M. Benjillali, B. Shihada, and M. Alouini, “Learn-As-You-Fly: A Distributed Algorithm for Joint 3D Placement and User Association in Multi-UAVs Networks,” IEEE Transactions on Wireless Communications, vol. 18, no. 12, pp. 5831–5844, 2019.
  173. L. J. Rodriguez et al., “Physical layer security in wireless cooperative relay networks: state of the art and beyond,” IEEE Communications Magazine, vol. 53, no. 12, pp. 32–39, 2015.
  174. X. Sun et al., “Physical Layer Security in UAV Systems: Challenges and Opportunities,” IEEE Wireless Communications, vol. 26, no. 5, pp. 40–47, 2019.
  175. D. Bonilla Licea, G. Silano, M. Ghogho, and M. Saska, “Omnidirectional Multi-Rotor Aerial Vehicle Pose Optimization: A Novel Approach to Physical Layer Security,” in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024.
  176. X. Sun et al., “Joint Resource Allocation and Trajectory Design for UAV-Aided Wireless Physical Layer Security,” in 2018 IEEE Globecom Workshops (GC Wkshps), 2018, pp. 1–6.
  177. A. Li, Q. Wu, and R. Zhang, “UAV-Enabled Cooperative Jamming for Improving Secrecy of Ground Wiretap Channel,” IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 181–184, 2019.
  178. Y. Cai et al., “Dual-UAV-Enabled Secure Communications: Joint Trajectory Design and User Scheduling,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 1972–1985, 2018.
  179. Y. Zhou et al., “Improving Physical Layer Security via a UAV Friendly Jammer for Unknown Eavesdropper Location,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11 280–11 284, 2018.
  180. C. Liu, J. Lee, and T. Q. S. Quek, “Safeguarding UAV Communications Against Full-Duplex Active Eavesdropper,” IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 2919–2931, 2019.
  181. X. Sun et al., “Robust Trajectory and Resource Allocation Design for Secure UAV-Aided Communications,” in 2019 IEEE International Conference on Communications Workshops (ICC Workshops), 2019, pp. 1–6.
  182. M. Tognon and A. Franchi, “Omnidirectional Aerial Vehicles With Unidirectional Thrusters: Theory, Optimal Design, and Control,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2277–2282, 2018.
  183. I. CVX Research, “CVX: Matlab software for disciplined convex programming, version 2.0,” http://cvxr.com/cvx, Aug. 2012.
  184. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  185. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  186. CPLEX, IBM ILOG, “V12. 1: User’s Manual for CPLEX,” International Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.
  187. J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl, “Casadi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, 07 2018.
  188. L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement learning for control: Performance, stability, and deep approximators,” Annual Reviews in Control, vol. 46, pp. 8–28, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1367578818301184
Citations (6)

Summary

We haven't generated a summary for this paper yet.