Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability of Fixed Points in Generalized Fractional Maps of the Orders $0< α<1$

Published 5 Sep 2022 in nlin.CD | (2209.01719v1)

Abstract: Caputo fractional (with power-law kernels) and fractional (delta) difference maps belong to a more widely defined class of generalized fractional maps, which are discrete convolutions with some power-law-like functions. The conditions of the asymptotic stability of the fixed points for maps of the orders $0< \alpha <1$ that are derived in this paper are narrower than the conditions of stability for the discrete convolution equations in general and wider than the well-known conditions of stability for the fractional difference maps. The derived stability conditions for the fractional standard and logistic maps coincide with the results previously observed in numerical simulations. In nonlinear maps, one of the derived limits of the fixed-point stability coincides with the fixed-point - asymptotically period two bifurcation point.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.