Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Independence Testing via Latent Representation Learning (2209.01547v1)

Published 4 Sep 2022 in cs.LG and stat.ML

Abstract: Detecting conditional independencies plays a key role in several statistical and machine learning tasks, especially in causal discovery algorithms. In this study, we introduce LCIT (Latent representation based Conditional Independence Test)-a novel non-parametric method for conditional independence testing based on representation learning. Our main contribution involves proposing a generative framework in which to test for the independence between X and Y given Z, we first learn to infer the latent representations of target variables X and Y that contain no information about the conditioning variable Z. The latent variables are then investigated for any significant remaining dependencies, which can be performed using the conventional partial correlation test. The empirical evaluations show that LCIT outperforms several state-of-the-art baselines consistently under different evaluation metrics, and is able to adapt really well to both non-linear and high-dimensional settings on a diverse collection of synthetic and real data sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bao Duong (14 papers)
  2. Thin Nguyen (28 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.