Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization of discrete diffusion models by asymptotic expansion (2209.01420v1)

Published 3 Sep 2022 in math.NA, cond-mat.other, and cs.NA

Abstract: Diffusion behaviors of heterogeneous materials are of paramount importance in many engineering problems. Numerical models that take into account the internal structure of such materials are robust but computationally very expensive. This burden can be partially decreased by using discrete models, however even then the practical application is limited to relatively small material volumes. This paper formulates a homogenization scheme for discrete diffusion models. Asymptotic expansion homogenization is applied to distinguish between (i) the continuous macroscale description approximated by the standard finite element method and (ii) the fully resolved discrete mesoscale description in a local representative volume element (RVE) of material. Both transient and steady-state variants with nonlinear constitutive relations are discussed. In all the cases, the resulting discrete RVE problem becomes a simple linear steady-state problem that can be easily pre-computed. The scale separation provides a significant reduction of computational time allowing the solution of practical problems with a negligible error introduced mainly by the finite element discretization at the macroscale.

Citations (7)

Summary

We haven't generated a summary for this paper yet.