Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

E-backtesting (2209.00991v5)

Published 27 Aug 2022 in q-fin.RM, math.ST, stat.ME, and stat.TH

Abstract: In the recent Basel Accords, the Expected Shortfall (ES) replaces the Value-at-Risk (VaR) as the standard risk measure for market risk in the banking sector, making it the most important risk measure in financial regulation. One of the most challenging tasks in risk modeling practice is to backtest ES forecasts provided by financial institutions. To design a model-free backtesting procedure for ES, we make use of the recently developed techniques of e-values and e-processes. Backtest e-statistics are introduced to formulate e-processes for risk measure forecasts, and unique forms of backtest e-statistics for VaR and ES are characterized using recent results on identification functions. For a given backtest e-statistic, a few criteria for optimally constructing the e-processes are studied. The proposed method can be naturally applied to many other risk measures and statistical quantities. We conduct extensive simulation studies and data analysis to illustrate the advantages of the model-free backtesting method, and compare it with the ones in the literature.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com