Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The first fundamental theorem of invariant theory for the quantum queer superalgebra (2209.00811v1)

Published 2 Sep 2022 in math.RT and math.QA

Abstract: The classical invariant theory for the queer Lie superalgebra is an investigation of the $\mathrm{U}(\mathfrak{q}n)$-invariant sub-superalgebra of the symmetric superalgebra $\mathrm{Sym}(V{\oplus r}\oplus V{*\oplus s})$ for $V=\mathbb{C}{n|n}$. We establish the first fundamental theorem of invariant theory for the quantum queer superalgebra $\mathrm{U}_q(\mathfrak{q}_n)$. The key ingredient is a quantum analog $\mathcal{O}{r,s}$ of the symmetric superalgebra $\mathrm{Sym}(V{\oplus r}\oplus V{*\oplus s})$ that is created as a braided tensor product of a quantization $\mathsf{A}{r,n}$ of $\mathrm{Sym}(V{\oplus r})$ and a quantization $\bar{\mathsf{A}}{s,n}$ of $\mathrm{Sym}(V{*\oplus s})$. Since the quantum queer superalgebra $\mathrm{U}_q(\mathfrak{q}_n)$ is not quasi-triangular, our braided tensor product is created via an explicit intertwining operator instead of the universal $\mathcal{R}$-matrix.

Summary

We haven't generated a summary for this paper yet.