Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting (2209.00654v4)

Published 1 Sep 2022 in cs.LG

Abstract: Due to the non-stationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distribution drift and degrade the forecasting performance over time. Existing methods address distribution drift via adapting to the latest arrived data or self-correcting per the meta knowledge derived from future data. Despite their great success in MTS forecasting, these methods hardly capture the intrinsic distribution changes, especially from a distributional perspective. Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time between historical observations and future data in MTSs and infer the dependencies as a temporal conditional distribution to leverage latent variables. Specifically, a novel temporal Hawkes attention mechanism represents temporal factors subsequently fed into feed-forward networks to estimate the prior Gaussian distribution of latent variables. The representation of temporal factors further dynamically adjusts the structures of Transformer-based encoder and decoder to distribution changes by leveraging a gated attention mechanism. Moreover, we introduce conditional continuous normalization flow to transform the prior Gaussian to a complex and form-free distribution to facilitate flexible inference of the temporal conditional distribution. Extensive experiments conducted on six real-world MTS datasets demonstrate the TCVAE's superior robustness and effectiveness over the state-of-the-art MTS forecasting baselines. We further illustrate the TCVAE applicability through multifaceted case studies and visualization in real-world scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph convolutional recurrent network for traffic forecasting,” in Proc. NeurIPS, 2020.
  2. R. Cirstea, B. Yang, C. Guo, T. Kieu, and S. Pan, “Towards spatio- temporal aware traffic time series forecasting,” in Proc. ICDE, 2022, pp. 2900–2913.
  3. L. Zhang, C. C. Aggarwal, and G. Qi, “Stock price prediction via discovering multi-frequency trading patterns,” in Proc. KDD, 2017, pp. 2141–2149.
  4. S. W. Lee and H. Y. Kim, “Stock market forecasting with super-high dimensional time-series data using convlstm, trend sampling, and specialized data augmentation,” Expert Syst. Appl., vol. 161, p. 113704, 2020.
  5. D. T. Tran, A. Iosifidis, J. Kanniainen, and M. Gabbouj, “Temporal attention-augmented bilinear network for financial time-series data analysis,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 5, pp. 1407–1418, 2019.
  6. D. Xu, W. Cheng, B. Zong, D. Song, J. Ni, W. Yu, Y. Liu, H. Chen, and X. Zhang, “Tensorized LSTM with adaptive shared memory for learning trends in multivariate time series,” in Proc. AAAI, 2020, pp. 1395–1402.
  7. J. K. Tarus, Z. Niu, and G. Mustafa, “Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning,” Artif. Intell. Rev., vol. 50, no. 1, pp. 21–48, 2018.
  8. Q. Zhang, L. Cao, C. Shi, and Z. Niu, “Neural time-aware sequential recommendation by jointly modeling preference dynamics and explicit feature couplings,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 10, pp. 5125–5137, 2022.
  9. G. Spadon, S. Hong, B. Brandoli, S. Matwin, J. F. R. Jr., and J. Sun, “Pay attention to evolution: Time series forecasting with deep graph-evolution learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5368–5384, 2022.
  10. D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong, B. Xu, J. Bai, J. Tong, and Q. Zhang, “Spectral temporal graph neural network for multivariate time-series forecasting,” in Proc. NeurIPS, 2020.
  11. L. Cao, Q. Liu, and W. Hou, “COVID-19 modeling: A review,” CoRR, vol. abs/2104.12556, 2021.
  12. M. W. Watson, “Vector autoregressions and cointegration,” Working Paper Series, Macroeconomic Issues, vol. 4, 1993.
  13. M. W. Seeger, D. Salinas, and V. Flunkert, “Bayesian intermittent demand forecasting for large inventories,” in Proc. NIPS, 2016, pp. 4646–4654.
  14. X. Chen and L. Sun, “Bayesian temporal factorization for multidimensional time series prediction,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2021.
  15. G. Lai, W. Chang, Y. Yang, and H. Liu, “Modeling long- and short-term temporal patterns with deep neural networks,” in Proc. SIGIR, 2018, pp. 95–104.
  16. S. Shih, F. Sun, and H. Lee, “Temporal pattern attention for multivariate time series forecasting,” Mach. Learn., vol. 108, no. 8-9, pp. 1421–1441, 2019.
  17. K. Bandara, C. Bergmeir, and H. Hewamalage, “Lstm-msnet: Leveraging forecasts on sets of related time series with multiple seasonal patterns,” IEEE Trans. Neural Networks Learn. Syst., vol. 32, no. 4, pp. 1586–1599, 2021.
  18. W. Zheng and J. Hu, “Multivariate time series prediction based on temporal change information learning method,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–15, 2022.
  19. J. Xu and L. Cao, “Copula variational lstm for high-dimensional cross-market multivariate dependence modeling,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–15, 2023.
  20. R. Sen, H. Yu, and I. S. Dhillon, “Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting,” in Proc. NeurIPS, 2019, pp. 4838–4847.
  21. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proc. AAAI, 2021, pp. 11 106–11 115.
  22. S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar, “Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting,” in Proc. ICLR, 2022.
  23. H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting,” in Proc. NeurIPS, 2021, pp. 22 419–22 430.
  24. T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in Proc. ICML, vol. 162, 2022, pp. 27 268–27 286.
  25. Y. Zhang and J. Yan, “Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting,” in Proc. ICLR, 2023.
  26. S. Zhu, J. Zheng, and Q. Ma, “Mr-transformer: Multiresolution transformer for multivariate time series prediction,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–13, 2023.
  27. L. Cao, “Non-iidness learning in behavioral and social data,” Comput. J., vol. 57, no. 9, pp. 1358–1370, 2014.
  28. W. Li, X. Yang, W. Liu, Y. Xia, and J. Bian, “DDG-DA: data distribution generation for predictable concept drift adaptation,” in Proc. AAAI, 2022, pp. 4092–4100.
  29. W. Zheng, P. Zhao, G. Chen, H. Zhou, and Y. Tian, “A hybrid spiking neurons embedded lstm network for multivariate time series learning under concept-drift environment,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2022.
  30. Y. Zhou, C. Liang, N. Li, C. Yang, S. Zhu, and R. Jin, “Robust online matching with user arrival distribution drift,” in Proc. AAAI, 2019, pp. 459–466.
  31. C. Liu, Y. Li, X. Zhao, C. Peng, Z. Lin, and J. Shao, “Concept drift adaptation for CTR prediction in online advertising systems,” CoRR, vol. abs/2204.05101, 2022.
  32. Y. Liu, H. Wu, J. Wang, and M. Long, “Non-stationary transformers: Rethinking the stationarity in time series forecasting,” in Proc. NeurIPS, 2022.
  33. N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Deep adaptive input normalization for time series forecasting,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 9, pp. 3760–3765, 2020.
  34. F. Ilhan, O. Karaahmetoglu, I. Balaban, and S. S. Kozat, “Markovian rnn: An adaptive time series prediction network with hmm-based switching for nonstationary environments,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–14, 2021.
  35. W. Fan, P. Wang, D. Wang, D. Wang, Y. Zhou, and Y. Fu, “Dish-ts: A general paradigm for alleviating distribution shift in time series forecasting,” in Proc. AAAI, 2023, pp. 7522–7529.
  36. J. Kirkpatrick, R. Pascanu, N. Rabinowitz, and et al., “Overcoming catastrophic forgetting in neural networks,” Proceedings of the National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.
  37. Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu, “Ts2vec: Towards universal representation of time series,” in Proc. AAAI, 2022, pp. 8980–8987.
  38. Y. Du, J. Wang, W. Feng, S. J. Pan, T. Qin, R. Xu, and C. Wang, “Adarnn: Adaptive learning and forecasting of time series,” in Proc. CIKM, 2021, pp. 402–411.
  39. X. You, M. Zhang, D. Ding, F. Feng, and Y. Huang, “Learning to learn the future: Modeling concept drifts in time series prediction,” in Proc. CIKM, 2021, pp. 2434–2443.
  40. Y. Song, J. Lu, H. Lu, and G. Zhang, “Learning data streams with changing distributions and temporal dependency,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 8, pp. 3952–3965, 2023.
  41. L. Zhao, S. Kong, and Y. Shen, “Doubleadapt: A meta-learning approach to incremental learning for stock trend forecasting,” in Proc. KDD, 2023, pp. 3492–3503.
  42. T. Zhao, R. Zhao, and M. Eskénazi, “Learning discourse-level diversity for neural dialog models using conditional variational autoencoders,” in Proc. ACL (1), 2017, pp. 654–664.
  43. X. Gu, K. Cho, J. Ha, and S. Kim, “Dialogwae: Multimodal response generation with conditional wasserstein auto-encoder,” in Proc. ICLR (Poster), 2019.
  44. H. Yang, X. Yao, Y. Duan, J. Shen, J. Zhong, and K. Zhang, “Progressive open-domain response generation with multiple controllable attributes,” in Proc. IJCAI, 2021, pp. 3279–3285.
  45. R. Jankovic, I. Mihajlovic, and A. Amelio, “Time series vector autoregression prediction of the ecological footprint based on energy parameters,” CoRR, vol. abs/1910.11800, 2019.
  46. D. Salinas, M. Bohlke-Schneider, L. Callot, R. Medico, and J. Gasthaus, “High-dimensional multivariate forecasting with low-rank gaussian copula processes,” in Proc. NeurIPS, 2019, pp. 6824–6834.
  47. Q. Wang, S. Ren, Y. Xia, and L. Cao, “BiCMTS: Bidirectional coupled multivariate learning of irregular time series with missing values,” in Proc. CIKM, 2021, pp. 3493–3497.
  48. N. Mohajerin and S. L. Waslander, “Multistep prediction of dynamic systems with recurrent neural networks,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 11, pp. 3370–3383, 2019.
  49. S. Huang, D. Wang, X. Wu, and A. Tang, “Dsanet: Dual self-attention network for multivariate time series forecasting,” in Proc. CIKM, 2019, pp. 2129–2132.
  50. J. Deng, X. Chen, R. Jiang, X. Song, and I. W. Tsang, “St-norm: Spatial and temporal normalization for multi-variate time series forecasting,” in Proc. KDD, 2021, pp. 269–278.
  51. K. Yi, Q. Zhang, W. Fan, S. Wang, P. Wang, H. He, N. An, D. Lian, L. Cao, and Z. Niu, “Frequency-domain mlps are more effective learners in time series forecasting,” in Proc. NeurIPS, 2023.
  52. Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph modeling,” in Proc. IJCAI, 2019, pp. 1907–1913.
  53. B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting,” in Proc. IJCAI, 2018, pp. 3634–3640.
  54. Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series forecasting with graph neural networks,” in Proc. KDD, 2020, pp. 753–763.
  55. K. Yi, Q. Zhang, W. Fan, H. He, L. Hu, P. Wang, N. An, L. Cao, and Z. Niu, “Fouriergnn: Rethinking multivariate time series forecasting from a pure graph perspective,” in Proc. NeurIPS, 2023.
  56. H. He, Q. Zhang, S. Bai, K. Yi, and Z. Niu, “CATN: cross attentive tree-aware network for multivariate time series forecasting,” in Proc. AAAI, 2022, pp. 4030–4038.
  57. Y. Lyu, M. Li, X. Huang, U. Guler, P. Schaumont, and Z. Zhang, “Treernn: Topology-preserving deep graph embedding and learning,” in Proc. ICPR, 2020, pp. 7493–7499.
  58. Y. Fang, K. Ren, C. Shan, Y. Shen, Y. Li, W. Zhang, Y. Yu, and D. Li, “Learning decomposed spatial relations for multi-variate time-series modeling,” in Proc. AAAI, 2023, pp. 7530–7538.
  59. Y. Yang, Z. Zhao, and L. Cao, “Deep spectral copula mechanisms modeling coupled and volatile multivariate time series,” in Proc. DSAA, 2023.
  60. K. Yi, Q. Zhang, H. He, K. Shi, L. Hu, N. An, and Z. Niu, “Deep coupling network for multivariate time series forecasting,” ACM Trans. Inf. Syst., pp. 1–29, Mar. 2024.
  61. N. Nguyen and B. Quanz, “Temporal latent auto-encoder: A method for probabilistic multivariate time series forecasting,” in Proc. AAAI, 2021, pp. 9117–9125.
  62. V. Fortuin, M. Hüser, F. Locatello, H. Strathmann, and G. Rätsch, “SOM-VAE: interpretable discrete representation learning on time series,” in Proc. ICLR (Poster), 2019.
  63. A. Desai, C. Freeman, Z. Wang, and I. Beaver, “Timevae: A variational auto-encoder for multivariate time series generation,” CoRR, vol. abs/2111.08095, 2021.
  64. J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech,” in Proc. ICML, vol. 139, 2021, pp. 5530–5540.
  65. B. Askari, J. Szlichta, and A. Salehi-Abari, “Variational autoencoders for top-k recommendation with implicit feedback,” in Proc. SIGIR, 2021, pp. 2061–2065.
  66. M. Prakash, A. Krull, and F. Jug, “Fully unsupervised diversity denoising with convolutional variational autoencoders,” in Proc. ICLR, 2021.
  67. Z. He, P. Chen, X. Li, Y. Wang, G. Yu, C. Chen, X. Li, and Z. Zheng, “A spatiotemporal deep learning approach for unsupervised anomaly detection in cloud systems,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 4, pp. 1705–1719, 2023.
  68. T. Ma, J. Chen, and C. Xiao, “Constrained generation of semantically valid graphs via regularizing variational autoencoders,” in Proc. NeurIPS, 2018, pp. 7113–7124.
  69. R. Abdal, P. Zhu, N. J. Mitra, and P. Wonka, “Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows,” ACM Trans. Graph., vol. 40, no. 3, pp. 21:1–21:21, 2021.
  70. M. Kumar, M. Babaeizadeh, D. Erhan, C. Finn, S. Levine, L. Dinh, and D. Kingma, “Videoflow: A conditional flow-based model for stochastic video generation,” in Proc. ICLR, 2020.
  71. Y. Luo, K. Yan, and S. Ji, “Graphdf: A discrete flow model for molecular graph generation,” in Proc. ICML, vol. 139, 2021, pp. 7192–7203.
  72. Z. Zhang, C. Yu, S. Xu, and H. Li, “Learning flexibly distributional representation for low-quality 3d face recognition,” in Proc. AAAI, 2021, pp. 3465–3473.
  73. K. Rasul, A. Sheikh, I. Schuster, U. M. Bergmann, and R. Vollgraf, “Multivariate probabilistic time series forecasting via conditioned normalizing flows,” in Proc. ICLR, 2021.
  74. R. Sawhney, S. Agarwal, A. Wadhwa, T. Derr, and R. R. Shah, “Stock selection via spatiotemporal hypergraph attention network: A learning to rank approach,” in Proc. AAAI, 2021, pp. 497–504.
  75. T. M. Lai, Q. H. Tran, T. Bui, and D. Kihara, “A gated self-attention memory network for answer selection,” in Proc. EMNLP/IJCNLP (1), 2019, pp. 5952–5958.
  76. H. Ding and X. Luo, “Attentionrank: Unsupervised keyphrase extraction using self and cross attentions,” in Proc. EMNLP (1), 2021, pp. 1919–1928.
  77. H. He, Q. Zhang, S. Wang, K. Yi, Z. Niu, and L. Cao, “Learning informative representation for fairness-aware multivariate time-series forecasting: A group-based perspective,” IEEE Trans. Knowl. Data Eng., pp. 1–13, 2023.
  78. Y. Wu, J. Ni, W. Cheng, B. Zong, D. Song, Z. Chen, Y. Liu, X. Zhang, H. Chen, and S. B. Davidson, “Dynamic gaussian mixture based deep generative model for robust forecasting on sparse multivariate time series,” in Proc. AAAI, 2021, pp. 651–659.
  79. W. Fan, S. Zheng, X. Yi, W. Cao, Y. Fu, J. Bian, and T. Liu, “DEPTS: deep expansion learning for periodic time series forecasting,” in Proc. ICLR, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hui He (38 papers)
  2. Qi Zhang (785 papers)
  3. Kun Yi (25 papers)
  4. Kaize Shi (9 papers)
  5. Zhendong Niu (10 papers)
  6. Longbing Cao (85 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.