Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Efficient Learning of Factored Embeddings of Tensor Fields (2209.00372v2)

Published 1 Sep 2022 in cs.LG, cs.NA, and math.NA

Abstract: Data tensors of orders 2 and greater are now routinely being generated. These data collections are increasingly huge and growing. Many scientific and medical data tensors are tensor fields (e.g., images, videos, geographic data) in which the spatial neighborhood contains important information. Directly accessing such large data tensor collections for information has become increasingly prohibitive. We learn approximate full-rank and compact tensor sketches with decompositive representations providing compact space, time and spectral embeddings of tensor fields. All information querying and post-processing on the original tensor field can now be achieved more efficiently and with customizable accuracy as they are performed on these compact factored sketches in latent generative space. We produce optimal rank-r sketchy Tucker decomposition of arbitrary order data tensors by building compact factor matrices from a sample-efficient sub-sampling of tensor slices. Our sample efficient policy is learned via an adaptable stochastic Thompson sampling using Dirichlet distributions with conjugate priors.

Summary

We haven't generated a summary for this paper yet.