Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combating Noisy Labels in Long-Tailed Image Classification (2209.00273v2)

Published 1 Sep 2022 in cs.CV

Abstract: Most existing methods that cope with noisy labels usually assume that the class distributions are well balanced, which has insufficient capacity to deal with the practical scenarios where training samples have imbalanced distributions. To this end, this paper makes an early effort to tackle the image classification task with both long-tailed distribution and label noise. Existing noise-robust learning methods cannot work in this scenario as it is challenging to differentiate noisy samples from clean samples of tail classes. To deal with this problem, we propose a new learning paradigm based on matching between inferences on weak and strong data augmentations to screen out noisy samples and introduce a leave-noise-out regularization to eliminate the effect of the recognized noisy samples. Furthermore, we incorporate a novel prediction penalty based on online prior distribution to avoid bias towards head classes. This mechanism has superiority in capturing the class fitting degree in realtime compared to the existing long-tail classification methods. Exhaustive experiments demonstrate that the proposed method outperforms state-of-the-art algorithms that address the distribution imbalance problem in long-tailed classification under noisy labels.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chaowei Fang (32 papers)
  2. Lechao Cheng (66 papers)
  3. Huiyan Qi (5 papers)
  4. Dingwen Zhang (62 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.