Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What is missing in deep music generation? A study of repetition and structure in popular music (2209.00182v1)

Published 1 Sep 2022 in cs.SD, cs.IR, and eess.AS

Abstract: Structure is one of the most essential aspects of music, and music structure is commonly indicated through repetition. However, the nature of repetition and structure in music is still not well understood, especially in the context of music generation, and much remains to be explored with Music Information Retrieval (MIR) techniques. Analyses of two popular music datasets (Chinese and American) illustrate important music construction principles: (1) structure exists at multiple hierarchical levels, (2) songs use repetition and limited vocabulary so that individual songs do not follow general statistics of song collections, (3) structure interacts with rhythm, melody, harmony, and predictability, and (4) over the course of a song, repetition is not random, but follows a general trend as revealed by cross-entropy. These and other findings offer challenges as well as opportunities for deep-learning music generation and suggest new formal music criteria and evaluation methods. Music from recent music generation systems is analyzed and compared to human-composed music in our datasets, often revealing striking differences from a structural perspective.

Citations (14)

Summary

We haven't generated a summary for this paper yet.