Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Membership Inference Attacks by Exploiting Loss Trajectory (2208.14933v1)

Published 31 Aug 2022 in cs.CR and cs.LG

Abstract: Machine learning models are vulnerable to membership inference attacks in which an adversary aims to predict whether or not a particular sample was contained in the target model's training dataset. Existing attack methods have commonly exploited the output information (mostly, losses) solely from the given target model. As a result, in practical scenarios where both the member and non-member samples yield similarly small losses, these methods are naturally unable to differentiate between them. To address this limitation, in this paper, we propose a new attack method, called \system, which can exploit the membership information from the whole training process of the target model for improving the attack performance. To mount the attack in the common black-box setting, we leverage knowledge distillation, and represent the membership information by the losses evaluated on a sequence of intermediate models at different distillation epochs, namely \emph{distilled loss trajectory}, together with the loss from the given target model. Experimental results over different datasets and model architectures demonstrate the great advantage of our attack in terms of different metrics. For example, on CINIC-10, our attack achieves at least 6$\times$ higher true-positive rate at a low false-positive rate of 0.1\% than existing methods. Further analysis demonstrates the general effectiveness of our attack in more strict scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yiyong Liu (5 papers)
  2. Zhengyu Zhao (43 papers)
  3. Michael Backes (157 papers)
  4. Yang Zhang (1129 papers)
Citations (79)

Summary

We haven't generated a summary for this paper yet.