Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cadence Detection in Symbolic Classical Music using Graph Neural Networks (2208.14819v1)

Published 31 Aug 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Cadences are complex structures that have been driving music from the beginning of contrapuntal polyphony until today. Detecting such structures is vital for numerous MIR tasks such as musicological analysis, key detection, or music segmentation. However, automatic cadence detection remains challenging mainly because it involves a combination of high-level musical elements like harmony, voice leading, and rhythm. In this work, we present a graph representation of symbolic scores as an intermediate means to solve the cadence detection task. We approach cadence detection as an imbalanced node classification problem using a Graph Convolutional Network. We obtain results that are roughly on par with the state of the art, and we present a model capable of making predictions at multiple levels of granularity, from individual notes to beats, thanks to the fine-grained, note-by-note representation. Moreover, our experiments suggest that graph convolution can learn non-local features that assist in cadence detection, freeing us from the need of having to devise specialized features that encode non-local context. We argue that this general approach to modeling musical scores and classification tasks has a number of potential advantages, beyond the specific recognition task presented here.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com