Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Readable is Model-generated Code? Examining Readability and Visual Inspection of GitHub Copilot (2208.14613v2)

Published 31 Aug 2022 in cs.SE

Abstract: Background: Recent advancements in LLMs have motivated the practical use of such models in code generation and program synthesis. However, little is known about the effects of such tools on code readability and visual attention in practice. Objective: In this paper, we focus on GitHub Copilot to address the issues of readability and visual inspection of model generated code. Readability and low complexity are vital aspects of good source code, and visual inspection of generated code is important in light of automation bias. Method: Through a human experiment (n=21) we compare model generated code to code written completely by human programmers. We use a combination of static code analysis and human annotators to assess code readability, and we use eye tracking to assess the visual inspection of code. Results: Our results suggest that model generated code is comparable in complexity and readability to code written by human pair programmers. At the same time, eye tracking data suggests, to a statistically significant level, that programmers direct less visual attention to model generated code. Conclusion: Our findings highlight that reading code is more important than ever, and programmers should beware of complacency and automation bias with model generated code.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Naser Al Madi (3 papers)
Citations (50)

Summary

We haven't generated a summary for this paper yet.