Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new construction of nonlinear codes via algebraic function fields (2208.14569v1)

Published 30 Aug 2022 in cs.IT and math.IT

Abstract: In coding theory, constructing codes with good parameters is one of the most important and fundamental problems. Though a great many of good codes have been produced, most of them are defined over alphabets of sizes equal to prime powers. In this paper, we provide a new explicit construction of $(q+1)$-ary nonlinear codes via algebraic function fields, where $q$ is a prime power. Our codes are constructed by evaluations of rational functions at all rational places of the algebraic function field. Compared with algebraic geometry codes, the main difference is that we allow rational functions to be evaluated at pole places. After evaluating rational functions from a union of Riemann-Roch spaces, we obtain a family of nonlinear codes over the alphabet $\mathbb{F}_{q}\cup {\infty}$. It turns out that our codes have better parameters than those obtained from MDS codes or good algebraic geometry codes via code alphabet extension and restriction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.