Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Truncation Algorithm for Markov Chain Equilibrium Distributions with Computable Error Bounds (2208.14406v1)

Published 30 Aug 2022 in math.PR, cs.NA, math.NA, and q-bio.QM

Abstract: This paper introduces a new algorithm for numerically computing equilibrium (i.e. stationary) distributions for Markov chains and Markov jump processes with either a very large finite state space or a countably infinite state space. The algorithm is based on a ratio representation for equilibrium expectations in which the numerator and denominator correspond to expectations defined over paths that start and end within a given return set $K$. When $K$ is a singleton, this representation is a well-known consequence of regenerative process theory. For computational tractability, we ignore contributions to the path expectations corresponding to excursions out of a given truncation set $A$. This yields a truncation algorithm that is provably convergent as $A$ gets large. Furthermore, in the presence of a suitable Lyapunov function, we can bound the path expectations, thereby providing computable and convergent error bounds for our numerical procedure. Our paper also provides a computational comparison with two other truncation methods that come with computable error bounds. The results are in alignment with the observation that our bounds have associated computational complexities that typically scale better as the truncation set gets bigger.

Citations (4)

Summary

We haven't generated a summary for this paper yet.